I have a periodic task in c++, running on an embedded linux platform, and have to run at 5 ms intervals. It seems to be working as expected, but is my current solution good enough?
I have implemented the scheduler using sleep_until(), but some comments I have received is that setitimer() is better. As I would like the application to be at least some what portable, I would prefer c++ standard... of course unless there are other problems.
I have found plenty of sites that show implementation with each, but I have not found any arguments for why one solution is better than the other. As I see it, sleep_until() will implement an "optimal" on any (supported) platform, and I'm getting a feeling the comments I have received are focused more on usleep() (which I do not use).
My implementation looks a little like this:
bool is_submilli_capable() {
return std::ratio_greater<std::milli,
std::chrono::system_clock::period>::value;
}
int main() {
if (not is_submilli_capable())
exit(1);
while (true) {
auto next_time = next_period_start();
do_the_magic();
std::this_thread::sleep_until(next_time);
}
}
A short summoning of the issue.
- I have an embedded linux platform, build with yocto and with RT capabilities
- The application need to read and process incoming data every 5 ms
- Building with gcc 11.2.0
- Using c++20
- All the "hard work" is done in separate threads, so this question is only regards triggering the task periodically and with minimal jitter
Since the application is supposed to read and process the data every 5 ms, it is possible that a few times, it does not perform the required operations. What I mean to say is that in a time interval of 20 ms, do_the_magic() is supposed to be invoked 4 times... But if the time taken to execute do_the_magic() is 10 ms, it will get invoked only 2 times. If that is an acceptable outcome, the current implementation is good enough.
Since the application is reading data, it probably receives it from the network or disk. And adding the overhead of processing it, it likely takes more than 5 ms to do so (depending on the size of the data). If it is not acceptable to miss out on any invocation of do_the_magic, the current implementation is not good enough.
What you could probably do is create a few threads. Each thread executes the do_the_magic function and then goes to sleep. Every 5 ms, you wake a sleeping thread which will most likely take less than 5 ms to happen. This way no invocation of do_the_magic is missed. Also, the number of threads depends on how long will do_the_magic take to execute.
Create as many semaphores as the number of threads where thread i is waiting for semaphore i. wake_some_thread can then release a semaphore starting from index 0 till NUM_THREADS and start again.