Can't input data to custom loss: Inputs to eager execution function cannot be Keras symbolic tensors

790 Views Asked by At

When I'm testing my tensorflow keras custom loss(using additional input data to calculate loss), which is as follow:

@tf.function
def build_walker_loss(labeled_output_t, unlabeled_output_t, label):
    similarity = tf.matmul(labeled_output_t, unlabeled_output_t, transpose_b=True)
    transition_prob_to_unlabeled = tf.nn.softmax(similarity,  name="transition_prob_to_unlabeled")
    transition_prob_to_labeled = tf.nn.softmax(tf.transpose(similarity),  name="transition_prob_to_labeled")

    roundtrip_prob = tf.matmul(transition_prob_to_unlabeled, transition_prob_to_labeled, name="roundtrip_prob")

    label = tf.reshape(label, [-1, 1])
    target_distribution = tf.cast(tf.equal(label, tf.transpose(label)),dtype=tf.float32)
    num_class = tf.compat.v1.reduce_sum(target_distribution, axis=1, keep_dims=True)
    target_distribution = target_distribution / num_class
    loss = tf.keras.losses.categorical_crossentropy(from_logits=False,
        y_true = target_distribution,
        y_pred = tf.math.log(1e-8 + roundtrip_prob),
    )
    print(loss)
    return loss

X = np.random.uniform(0,1, (1000,10))
y = np.random.uniform(0,1, 1000)
W = np.random.uniform(1,2, 1000)

inp = Input((10,))
true = Input((10,))
sample_weight = Input((10,))
x = Dense(32, activation='relu')(inp)
out = Dense(10)(x)
print(true)
print(out)
m = Model([inp,true, sample_weight], out)
m.add_loss( build_walker_loss( true, out, sample_weight ) )
m.compile(loss=None, optimizer='adam')

I got a error massage:

    _SymbolicException                        Traceback (most recent call last)
<ipython-input-13-a0b380ce314d> in <module>
     37 print(out)
     38 m = Model([inp,true, sample_weight], out)
---> 39 m.add_loss( build_walker_loss( true, out, sample_weight ) )
     40 m.compile(loss=None, optimizer='adam')
     41 # history = m.fit([X, y, W], y=None, epochs=10)

E:\Anaconda3\envs\lrc\lib\site-packages\tensorflow\python\eager\def_function.py in __call__(self, *args, **kwds)
    578         xla_context.Exit()
    579     else:
--> 580       result = self._call(*args, **kwds)
    581 
    582     if tracing_count == self._get_tracing_count():

E:\Anaconda3\envs\lrc\lib\site-packages\tensorflow\python\eager\def_function.py in _call(self, *args, **kwds)
    648               *args, **kwds)
    649       # If we did not create any variables the trace we have is good enough.
--> 650       return self._concrete_stateful_fn._filtered_call(canon_args, canon_kwds)  # pylint: disable=protected-access
    651 
    652     def fn_with_cond(*inner_args, **inner_kwds):

E:\Anaconda3\envs\lrc\lib\site-packages\tensorflow\python\eager\function.py in _filtered_call(self, args, kwargs)
   1663          if isinstance(t, (ops.Tensor,
   1664                            resource_variable_ops.BaseResourceVariable))),
-> 1665         self.captured_inputs)
   1666 
   1667   def _call_flat(self, args, captured_inputs, cancellation_manager=None):

E:\Anaconda3\envs\lrc\lib\site-packages\tensorflow\python\eager\function.py in _call_flat(self, args, captured_inputs, cancellation_manager)
   1744       # No tape is watching; skip to running the function.
   1745       return self._build_call_outputs(self._inference_function.call(
-> 1746           ctx, args, cancellation_manager=cancellation_manager))
   1747     forward_backward = self._select_forward_and_backward_functions(
   1748         args,

E:\Anaconda3\envs\lrc\lib\site-packages\tensorflow\python\eager\function.py in call(self, ctx, args, cancellation_manager)
    596               inputs=args,
    597               attrs=attrs,
--> 598               ctx=ctx)
    599         else:
    600           outputs = execute.execute_with_cancellation(

E:\Anaconda3\envs\lrc\lib\site-packages\tensorflow\python\eager\execute.py in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
     72       raise core._SymbolicException(
     73           "Inputs to eager execution function cannot be Keras symbolic "
---> 74           "tensors, but found {}".format(keras_symbolic_tensors))
     75     raise e
     76   # pylint: enable=protected-access

_SymbolicException: Inputs to eager execution function cannot be Keras symbolic tensors, but found [<tf.Tensor 'input_14:0' shape=(None, 10) dtype=float32>, <tf.Tensor 'dense_9/Identity:0' shape=(None, 10) dtype=float32>, <tf.Tensor 'input_15:0' shape=(None, 10) dtype=float32>]

I follow the answer in Custom loss problem: inputs to eager execution function cannot be keras symbolic tensors but found, but without considering the correctness of the input data, when I change the mse loss to my own loss function, I still got this error.

I don’t know which step made my function error. What can I do to add this loss function to my model?

2

There are 2 best solutions below

0
Ivan K. On BEST ANSWER

It is possible to create a custom loss by subclassing tf.keras.losses.Loss. The loss created in this way can be passed directly to the optimizer. Let me demonstrate this on an example of the focal loss (arXiv:1708.02002).

class focal_loss(tf.keras.losses.Loss):

    # function to initilize loss parameters
    def __init__(self, gamma):
        super().__init__()
        self.gamma = gamma
    
    # function to evaluate loss 
    # must accept exectly 3 parameters: true labels, predicted labels, and, possible,samples weights
    # must return loss value
    def __call__(self, y_true, y_pred, sample_weight=None):
        entropy = tf.keras.losses.binary_crossentropy( y_true, y_pred )
        focal_weight = tf.reduce_sum( y_true*tf.math.pow((1-y_pred),self.gamma), axis=-1 )
        loss = tf.math.multiply(entropy,focal_weight)
        # use sample weights, if provided
        if sample_weight is not None:
            sample_weight = tf.squeeze(sample_weight)
            loss = tf.math.multiply(loss,sample_weight)
        loss = tf.math.reduce_sum( loss )
    return loss

Further you can pass it directly to the optimizer:

f_loss = focal_loss(2.)
model.compile(loss=f_loss, optimizer='adam')

If rewriting your loss in this way would not work, then it is clearly an implementation error (in a way you compute loss). A more carefull study will be needed.

2
elbe On

I tried your code and got a different error :

TypeError: You are passing KerasTensor(type_spec=TensorSpec(shape=(None, 10), dtype=tf.float32, name='true'), name='true', description="created by layer 'true'"), an intermediate Keras symbolic input/output, to a TF API that does not allow registering custom dispatchers, such as tf.cond, tf.function, gradient tapes, or tf.map_fn.

which means that the problem is with @tf.function. If you comment out this line, it will work