I have an Imblearn pipeline:
from imblearn.pipeline import Pipeline as ImbPipeline
pipe = ImbPipeline(steps=[
('imp', Imputer()),
('enc', encoder),
('res', SMOTENC(random_state=11)),
...
])
param = [{'enc__onehotencoder__min_frequency': [0.0125, 0.025],
'res__categorical_features': [DEPENDS ON ONEHOTENCODER MIN FREQUENCY]}]
gs = GridSearchCV(pipe, param)
res__categorical_features parameter depends on enc__onehotencoder__min_frequency - in my partucular case, categorical columns are all except the last two, but the number of columns after encoding depends on min_frequency.
So I want to set res__categorical_features dynamically. Is there a way to do this?