Find the polynomial function of a dataset approximated by Bezier method

135 Views Asked by At

I'm using the answer posted here to fit a curve through a set of datapoints

import numpy as np
import matplotlib.pyplot as plt
from scipy.special import binom

def Bernstein(n, k):
    """Bernstein polynomial.

    """
    coeff = binom(n, k)

    def _bpoly(x):
        return coeff * x ** k * (1 - x) ** (n - k)

    return _bpoly


def Bezier(points, num=200):
    """Build Bézier curve from points.

    """
    N = len(points)
    t = np.linspace(0, 1, num=num)
    curve = np.zeros((num, 2))
    for ii in range(N):
        curve += np.outer(Bernstein(N - 1, ii)(t), points[ii])
    return curve
xp = np.array([2,3,4,5])
yp = np.array([2,1,4,0])
x, y = Bezier(list(zip(xp, yp))).T

plt.plot(x,y)
plt.plot(xp,yp,"ro")
plt.plot(xp,yp,"b--")

plt.show()

I would like to find the polynomial function of the fitted curve.

Suggestions on how to do this will be really helpful.

0

There are 0 best solutions below