General object recognition with biggest number of classes

1.7k Views Asked by At

I'm new to the computer vision world, I'm trying to create a script with the objective to gather data from a dataset of images.

I'm interested in what kind of objects are in those images and getting a summary of them in a json file for every image.

I've checked out some YOLO implementations but the ones I've seen are almost always based on COCO and have 80 classes or have a custom dataset.

I've seen that there are algorithms like InceptionV3 etc. which are capable of classifying 1000 classes. But per my understanding object classification is different from object recognition.

Is there a way to use those big dataset classification algos for object detection? Or any other suggestion?

2

There are 2 best solutions below

1
Harsh Tanwar On

Unfortunately, I do not know where the breaking point is, and of course, it will depend on acceptable evaluation metrics and training data size.

From a technical point of view, there is no hard limit and if you go to extremes there could be Core ML model size issues and memory issues during inferences. However, that will only happen for an extremely large number of classes.

From a modeling perspective (which is a problem that will happen much earlier than the technical limitation) it is not as clear. As you increase the number of classes, you increase the risk of making classification mistakes. Although, the severity of a lot of the mistakes should simultaneously go down as you will have more and more classes that are naturally similar (breeds of dogs, etc.). The original YOLO9000 paper (https://arxiv.org/pdf/1612.08242.pdf) trained a model using 9000+ classes with reasonable results (lots of mistakes of course, but still impressive). They trained it on a combination of detection and classification data, so if they actually had detection data for all 9000, then results would presumably be even better.

In your experiment, it sounds like 50-60 was OK (thanks for giving us a sample point!). Anything below 100 is definitely tried and true, as long as you have the data. However, will 300 do OK? Will 1000 do OK? Theoretically, I would say yes, if you are able to provide enough training data and you adjust your expectation of what a good evaluation metric is since you know you'll make more mistakes. For instance, for classification with 1000 classes, it is common to report top-5 accuracy (that is, the correct label is in your top-5 classes for a sample).

Here is a useful link - https://github.com/apple/turicreate/issues/968

0
Steven White On

First, to level set on terminology.

Image Classification based neural networks, such as Inception and Resnet, classify an entire image based upon the classes the network was trained on. So if the image has a dog, then the classifier will most likely return the class dog with a higher confidence score as compared to the other classes the network was trained on. To train a network such as this, it's simple enough to group the same class images (all images with a dog) into folders as inputs. ImageNet and Pascal VOC are examples of public labeled datasets for Image Classification.

Object Detection based neural networks on the other hand, such as SSD and Yolo, will return a set of coordinates that indicate a bounding box and confident score for each class (object) that is detected based upon what the network was trained with. To train a network such as this, each object in an image much as annotated with a set of coordinates that correspond to the bounding boxes of the class (object). The COCO dataset, for example, is an annotated dataset of 80 classes (objects) with coordinates corresponding to the bounding box around each object. Another popular dataset is Object365 that contains 365 classes.

Another important type of neural network that the COCO dataset provides annotations for is Instance Segmentation models, such as Mask RCNN. These models provide pixel-level classification and are extremely compute-intensive, but critical for use cases such as self-driving cars. If you search for Detectron2 tutorials, you will find several great learning examples of training a Mask RCNN network on the COCO dataset.

So, to answer your question, Yes, you can use the COCO dataset (amongst many other options available publicly on the web) for object detection, or, you can also create your own dataset with a little effort by annotating your own dataset with bounding boxes around the object classes you want to train. Try Googling - 'using coco to train ssd model' to get some easy-to-follow tutorials. SSD stands for single-shot detector and is an alternative neural network architecture to Yolo.