Can someone please explain what this code does? It's from the book "Introduction to Machine Learning with Python" on Bernoulli Naive Bayes classifier:
counts = {}
for label in np.unique(y):
# iterate over each class
# count (sum) entries of 1 per feature
counts[label] = X[y == label].sum(axis=0)
print("Feature counts:\n", counts)
I don't understand what happens on line5.
Let's use an example.
np.unique(y)is[11,22,33]So label will successively be those.
When label is 11
y==labelis[11,22,33,11,22,11]==11which is[True,False,False,True,False,True]so
X[y==label]isX[[True,False,False,True,False,True]]so it is a selection of rows 0, 3 and 5 of X. So[[1,10],[4,40],[6,60]]sum(axis=0)sum that along axis 0, soX[y==label].sum(axis=0)is[1+4+6,10+40,60]=[11,110]so
counts[11]=[11,110]Likewise, when label is 22,
y==labelis[False,True,False,False,True,False], soX[y==label]is[[2,20],[5,50]]soX[y==label].sum(axis=0)is[7,70], which is affected tocounts[22].And when label is 33,
y==labelis just[False,False,True,False,False,False], soX[y==label]is[[3,30]]soX[y==label].sum(axis=0)is[3,30]which is affected tocounts[33].So at the end, if your X data are a list of k values, and y data a list of k classes, chosen among n possibilities,
countsare, for each n possible classes, the k sums of the values of data matching that class.