I'm pretty new in ML.
I start using sample to get to know how it works.
I'm trying to load multiple image folders. For example cars, cats folders containing learn data. I understand I need to load into pipeline new folders, now I can't see how to implement that
Do you have a suggestion?
// <SnippetImageTransforms>
IEstimator<ITransformer> pipeline = mlContext.Transforms.LoadImages(outputColumnName: "input", imageFolder: _imagesFolder, inputColumnName: nameof(ImageData.ImagePath))
// The image transforms transform the images into the model's expected format.
.Append(mlContext.Transforms.ResizeImages(outputColumnName: "input", imageWidth: InceptionSettings.ImageWidth, imageHeight: InceptionSettings.ImageHeight, inputColumnName: "input"))
.Append(mlContext.Transforms.ExtractPixels(outputColumnName: "input", interleavePixelColors: InceptionSettings.ChannelsLast, offsetImage: InceptionSettings.Mean))
// </SnippetImageTransforms>
// The ScoreTensorFlowModel transform scores the TensorFlow model and allows communication
// <SnippetScoreTensorFlowModel>
.Append(mlContext.Model.LoadTensorFlowModel(_inceptionTensorFlowModel).
ScoreTensorFlowModel(outputColumnNames: new[] { "softmax2_pre_activation" }, inputColumnNames: new[] { "input" }, addBatchDimensionInput: true))
// </SnippetScoreTensorFlowModel>
// <SnippetMapValueToKey>
.Append(mlContext.Transforms.Conversion.MapValueToKey(outputColumnName: "LabelKey", inputColumnName: "Label"))
// </SnippetMapValueToKey>
// <SnippetAddTrainer>
.Append(mlContext.MulticlassClassification.Trainers.LbfgsMaximumEntropy(labelColumnName: "LabelKey", featureColumnName: "softmax2_pre_activation"))
// </SnippetAddTrainer>
// <SnippetMapKeyToValue>
.Append(mlContext.Transforms.Conversion.MapKeyToValue("PredictedLabelValue", "PredictedLabel"))
.AppendCacheCheckpoint(mlContext);
// </SnippetMapKeyToValue>
// <SnippetLoadData>
IDataView trainingData = mlContext.Data.LoadFromTextFile<ImageData>(path: _trainTagsTsv, hasHeader: false);
// </SnippetLoadData>
// Train the model
Console.WriteLine("=============== Training classification model ===============");
// Create and train the model
// <SnippetTrainModel>
ITransformer model = pipeline.Fit(trainingData);
// </SnippetTrainModel>
// Generate predictions from the test data, to be evaluated
// <SnippetLoadAndTransformTestData>
IDataView testData = mlContext.Data.LoadFromTextFile<ImageData>(path: _testTagsTsv, hasHeader: false);
IDataView predictions = model.Transform(testData);
// Create an IEnumerable for the predictions for displaying results
IEnumerable<ImagePrediction> imagePredictionData = mlContext.Data.CreateEnumerable<ImagePrediction>(predictions, true);
DisplayResults(imagePredictionData);
// </SnippetLoadAndTransformTestData>