how to choose the best fitting function for a data set

241 Views Asked by At

I am trying to find the best fitting function for some data.
I have tried with :

my_model = np.poly1d(np.polyfit(arr_x, arr_y, 4))
plt.plot(arr_x, my_model(arr_x), 'g-')

where arr_x and arr_y are original data. This is what comes out:

original (blue) and fitting function (green)

The functions with the blue color are the original one and those in green are supposed to fit the blue functions.
These green functions remain the same, even if I increase the Polynom grad of the fitted function in my_model = np.poly1d(np.polyfit(arr_x, arr_y, 4)) to a number higher than 4

How could I compute functions to fit the original data (blue functions) ?
Could I find appropriate function to well fit the data ?

Thank you for taking your time to answer my question.

These following data are for the function on the right (the blue function). It could help to make some test.

arr_x = [4641.00003052, 4641.09999084, 4641.19999695, 4641.30001831, 4641.40000916, 4641.50001526, 4641.59999084, 4641.70002747, 4641.80001831, 4641.8999939, 4642.00001526, 4642.10002136, 4642.19999695, 4642.29998779, 4642.3999939, 4642.50001526, 4642.60002136, 4642.70001221, 4642.79998779, 4642.8999939, 4643., 4643.10002136, 4643.20002747, 4643.30000305, 4643.40000916, 4643.50001526, 4643.6000061, 4643.69999695, 4643.80001831, 4643.8999939, 4644.00001526, 4644.09999084, 4644.20001221, 4644.30003357, 4644.40002441, 4644.5, 4644.6000061, 4644.69999695, 4644.80000305, 4644.8999939, 4645.00001526, 4645.10002136, 4645.20002747, 4645.30000305, 4645.40002441, 4645.50001526, 4645.59999084, 4645.69999695, 4645.80001831, 4645.90002441, 4646.00003052, 4646.1000061, 4646.20001221, 4646.30001831, 4646.40000916, 4646.5, 4646.60002136, 4646.70002747, 4646.80001831, 4646.90002441, 4647.00001526, 4647.1000061, 4647.20002747, 4647.30000305, 4647.40002441, 4647.5, 4647.6000061, 4647.69999695, 4647.80001831, 4647.8999939, 4648., 4648.10002136, 4648.20002747, 4648.30000305, 4648.3999939, 4648.50003052, 4648.6000061, 4648.70001221, 4648.80001831, 4648.90002441, 4649.00001526, 4649.1000061, 4649.20001221, 4649.29998779, 4649.40000916, 4649.50003052, 4649.59999084, 4649.69999695, 4649.80000305, 4649.90002441, 4650., 4650.10002136, 4650.20002747, 4650.30001831, 4650.3999939, 4650.50001526, 4650.6000061, 4650.69999695, 4650.80000305, 4650.90000916, 4651., 4651.10002136, 4651.19999695, 4651.30001831, 4651.3999939, 4651.5, 4651.59999084, 4651.69999695, 4651.80001831, 4651.8999939, 4652., 4652.10002136, 4652.19999695, 4652.30001831, 4652.40002441, 4652.50003052, 4652.6000061, 4652.70001221, 4652.80000305, 4652.90000916, 4653.00003052, 4653.10002136, 4653.19999695, 4653.30001831, 4653.40000916, 4653.50003052, 4653.6000061, 4653.70001221, 4653.80001831, 4653.90002441, 4654.00001526, 4654.09999084, 4654.20001221, 4654.30000305, 4654.3999939, 4654.50003052, 4654.6000061, 4654.70001221, 4654.80000305, 4654.90000916, 4655., 4655.09999084, 4655.20001221, 4655.30001831, 4655.40000916, 4655.5, 4655.60002136, 4655.70001221, 4655.80000305, 4655.90000916, 4656.00003052, 4656.09999084, 4656.20001221, 4656.30001831, 4656.40000916, 4656.5, 4656.60002136, 4656.70002747, 4656.80000305, 4656.8999939, 4657.00001526, 4657.1000061, 4657.19999695, 4657.30001831, 4657.3999939, 4657.5, 4657.60002136, 4657.70001221, 4657.80000305, 4657.90000916, 4658., 4658.10002136, 4658.19999695, 4658.30001831, 4658.40000916, 4658.50001526, 4658.59999084, 4658.69999695, 4658.79998779, 4658.90000916, 4659., 4659.1000061, 4659.20002747, 4659.29998779, 4659.40000916, 4659.5, 4659.6000061, 4659.70001221, 4659.80000305, 4659.90000916, 4660., 4660.1000061, 4660.19999695, 4660.30000305, 4660.40000916, 4660.5, 4660.6000061, 4660.70002747, 4660.80001831, 4660.90000916, 4661., 4661.10002136, 4661.20002747, 4661.29998779, 4661.3999939, 4661.50001526, 4661.60002136, 4661.70001221, 4661.80000305, 4661.90000916, 4662., 4662.09999084, 4662.19999695, 4662.30001831, 4662.40000916, 4662.50001526, 4662.60002136, 4662.69999695, 4662.80000305, 4662.8999939, 4663., 4663.1000061, 4663.19999695, 4663.30001831, 4663.40002441, 4663.50001526, 4663.60002136, 4663.69999695, 4663.80000305, 4663.90000916, 4664., 4664.1000061, 4664.20002747, 4664.30001831, 4664.40002441, 4664.50003052, 4664.6000061, 4664.70001221, 4664.80000305, 4664.90000916, 4665.00003052, 4665.10002136]

arr_y = [0.01210571, 0.01447399, 0.0101318, 0.01009226, 0.01006458, 0.01004521, 0.01003164, 0.01002215, 0.01301551, 0.01211085, 0.0144776, 0.01313432, 0.01219402, 0.01153582, 0.01107507, 0.01075255, 0.01052678, 0.01336875, 0.01235812, 0.01465069, 0.01325548, 0.01527884, 0.01369519, 0.01258663, 0.01181064, 0.01726745, 0.01508721, 0.01056105, 0.01039273, 0.01327491, 0.01229244, 0.00860471, 0.0120233, 0.01141631, 0.01399141, 0.00979399, 0.00985579, 0.00689906, 0.00482934, 0.00638054, 0.01046638, 0.01632646, 0.02042852, 0.02929997, 0.03250998, 0.03775698, 0.03242989, 0.02870092, 0.02609065, 0.02426345, 0.02598442, 0.02418909, 0.02893236, 0.02925265, 0.03247686, 0.0317338, 0.03421366, 0.03594956, 0.04316469, 0.05721529, 0.0730507, 0.09313549, 0.11619484, 0.14433639, 0.17303547, 0.19912483, 0.22938738, 0.25357117, 0.27049982, 0.28534987, 0.30174491, 0.31622144, 0.32935501, 0.3355485, 0.33988395, 0.35191877, 0.35734314, 0.3671402, 0.36499814, 0.3574987, 0.35824909, 0.35577436, 0.35104205, 0.35072944, 0.34751061, 0.35125742, 0.3538802, 0.34971614, 0.3408013, 0.32256091, 0.32479264, 0.32635484, 0.33344839, 0.34741387, 0.34818971, 0.3247328, 0.28731296, 0.24011907, 0.19208335, 0.14645834, 0.11752084, 0.10926459, 0.10948521, 0.10363965, 0.08454775, 0.05918343, 0.0444284, 0.02809988, -0.01033008, -0.04323106, -0.08726174, -0.13308322, -0.18615825, -0.24131078, -0.29791754, -0.34954228, -0.3736796, -0.37857572, -0.385003, -0.3955021, -0.40585147, -0.41009603, -0.40706722, -0.39894705, -0.39026294, -0.38418406, -0.38292884, -0.38505019, -0.38653513, -0.38757459, -0.38830221, -0.37981155, -0.37086809, -0.37060766, -0.37042536, -0.37329775, -0.37230843, -0.3746159, -0.37623113, -0.35636179, -0.31245325, -0.25771728, -0.21640209, -0.17548147, -0.12283703, -0.07698592, -0.04189014, -0.0173231, 0.00587383, 0.03411168, 0.05087818, 0.05661472, 0.06063031, 0.06344121, 0.06240885, 0.0676862, 0.06838034, 0.07486624, 0.08540636, 0.09578446, 0.10604912, 0.11323438, 0.10926407, 0.11248485, 0.11473939, 0.11031758, 0.1102223, 0.11015561, 0.11010893, 0.09507625, 0.06655337, 0.03158736, -0.01388885, -0.06072219, -0.09950553, -0.10565387, -0.09795771, -0.0805704, -0.06239928, -0.0526795, -0.04887565, -0.05521295, -0.05664907, -0.04865435, -0.04005804, -0.03404063, -0.03282844, -0.03197991, -0.03138594, -0.02797016, -0.01957911, -0.01370538, -0.01559376, -0.01691563, -0.01484094, -0.01038866, -0.00727206, -0.00509044, -0.00956331, -0.01269432, -0.00888602, -0.00622022, -0.00435415, -0.00304791, -0.00213353, -0.00149347, -0.00104543, -0.0007318, 0.00248774, 0.00174142, -0.00178101, -0.00124671, -0.00087269, -0.00361089, -0.00252762, -0.00176933, -0.00123853, -0.00086697, 0.00239312, 0.00167518, 0.00417263, 0.00292084, 0.00204459, 0.00143121, 0.00100185, 0.00070129, 0.00049091, 0.00334363, 0.00234054, 0.00163838, 0.00414687, 0.00290281, 0.00203196, 0.00142238, 0.00399566, 0.01179696, 0.02025787, 0.02618051, 0.03032636, 0.02722845, 0.02205992, 0.02444194]


Thank you.
0

There are 0 best solutions below