I am using the SQuaD dataset for answer span selection. After using the BertTokenizer
to tokenize the passages, for some samples, the start and end indices of the answer don't match the real answer span position in the passage tokens anymore. How to solve this problem? One way is to modify the answer indices (also the training targets) accordingly? But how to do it?
How to map token indices from the SQuAD data to tokens from BERT tokenizer?
4.1k Views Asked by KoalaJ At
1
There are 1 best solutions below
Related Questions in BERT-LANGUAGE-MODEL
- in R, recovering strings that have been converted to factors with factor()
- How to reinstall pandoc after removing .cabal?
- How do I code a Mixed effects model for abalone growth in Aquaculture nutrition with nested individuals
- How to save t.test result in R to a txt file?
- how to call function from library in formula with R type provider
- geom_bar define border color with different fill colors
- Different outcome using model.matrix for a function in R
- Creating a combination data.table in R
- Force specific interactions in Package 'earth' in R
- Output from recursive function R
Related Questions in TRANSFORMER-MODEL
- in R, recovering strings that have been converted to factors with factor()
- How to reinstall pandoc after removing .cabal?
- How do I code a Mixed effects model for abalone growth in Aquaculture nutrition with nested individuals
- How to save t.test result in R to a txt file?
- how to call function from library in formula with R type provider
- geom_bar define border color with different fill colors
- Different outcome using model.matrix for a function in R
- Creating a combination data.table in R
- Force specific interactions in Package 'earth' in R
- Output from recursive function R
Related Questions in NLP-QUESTION-ANSWERING
- in R, recovering strings that have been converted to factors with factor()
- How to reinstall pandoc after removing .cabal?
- How do I code a Mixed effects model for abalone growth in Aquaculture nutrition with nested individuals
- How to save t.test result in R to a txt file?
- how to call function from library in formula with R type provider
- geom_bar define border color with different fill colors
- Different outcome using model.matrix for a function in R
- Creating a combination data.table in R
- Force specific interactions in Package 'earth' in R
- Output from recursive function R
Related Questions in HUGGINGFACE-TOKENIZERS
- in R, recovering strings that have been converted to factors with factor()
- How to reinstall pandoc after removing .cabal?
- How do I code a Mixed effects model for abalone growth in Aquaculture nutrition with nested individuals
- How to save t.test result in R to a txt file?
- how to call function from library in formula with R type provider
- geom_bar define border color with different fill colors
- Different outcome using model.matrix for a function in R
- Creating a combination data.table in R
- Force specific interactions in Package 'earth' in R
- Output from recursive function R
Related Questions in SQUAD
- in R, recovering strings that have been converted to factors with factor()
- How to reinstall pandoc after removing .cabal?
- How do I code a Mixed effects model for abalone growth in Aquaculture nutrition with nested individuals
- How to save t.test result in R to a txt file?
- how to call function from library in formula with R type provider
- geom_bar define border color with different fill colors
- Different outcome using model.matrix for a function in R
- Creating a combination data.table in R
- Force specific interactions in Package 'earth' in R
- Output from recursive function R
Trending Questions
- UIImageView Frame Doesn't Reflect Constraints
- Is it possible to use adb commands to click on a view by finding its ID?
- How to create a new web character symbol recognizable by html/javascript?
- Why isn't my CSS3 animation smooth in Google Chrome (but very smooth on other browsers)?
- Heap Gives Page Fault
- Connect ffmpeg to Visual Studio 2008
- Both Object- and ValueAnimator jumps when Duration is set above API LvL 24
- How to avoid default initialization of objects in std::vector?
- second argument of the command line arguments in a format other than char** argv or char* argv[]
- How to improve efficiency of algorithm which generates next lexicographic permutation?
- Navigating to the another actvity app getting crash in android
- How to read the particular message format in android and store in sqlite database?
- Resetting inventory status after order is cancelled
- Efficiently compute powers of X in SSE/AVX
- Insert into an external database using ajax and php : POST 500 (Internal Server Error)
Popular # Hahtags
Popular Questions
- How do I undo the most recent local commits in Git?
- How can I remove a specific item from an array in JavaScript?
- How do I delete a Git branch locally and remotely?
- Find all files containing a specific text (string) on Linux?
- How do I revert a Git repository to a previous commit?
- How do I create an HTML button that acts like a link?
- How do I check out a remote Git branch?
- How do I force "git pull" to overwrite local files?
- How do I list all files of a directory?
- How to check whether a string contains a substring in JavaScript?
- How do I redirect to another webpage?
- How can I iterate over rows in a Pandas DataFrame?
- How do I convert a String to an int in Java?
- Does Python have a string 'contains' substring method?
- How do I check if a string contains a specific word?
The tokenization in the original dataset is different from how BERT tokenizes the input. In BERT, less frequent words get split into subword units. You can easily find out the character offsets of the tokens in the original dataset.
In the newer versions of Transformers, the tokenizers have the option of
return_offsets_mapping
. If this is set toTrue
, it returns the character offset (a tuple(char_start, char_end)
). If you have the character offsets in the original text, you can map them with the output of the tokenizer.The output:
The
(0, 0)
spans correspond to technical tokens, in the case of BERT[CLS]
and[SEP]
.When you have the offsets using both the original tokenization and BERT tokenization, you can find out what are the indices in the re-tokenized string.