I'm trying to understand the functional programming paradigm so I'm playing around with an immutable linked list. I've created a Bag with some utility functions and now I want to iterate through the collection. I want to implement an Iterable:
sealed class Bag<out A> : Iterable<A> {
companion object {
fun <A> of(vararg aa: A): Bag<A> {
val tail = aa.sliceArray(1 until aa.size)
return if (aa.isEmpty()) Nil else Cons(aa[0], of(*tail))
}
/**
* Returns the tail of the bag
*/
fun <A> tail(bag: Bag<A>): Bag<A> =
when (bag) {
is Cons -> bag.tail
is Nil -> throw IllegalArgumentException("Nil cannot have a tail")
}
/**
* Add an item to the beginning
*/
fun <A> add(bag: Bag<A>, elem: A): Bag<A> =
Cons(elem, bag)
fun <A> isEmpty(bag: Bag<A>): Boolean =
when (bag) {
is Nil -> true
is Cons -> false
}
}
class BagIterator<A> : Iterator<A> {
override fun hasNext(): Boolean {
TODO("Not yet implemented")
}
override fun next(): A {
TODO("Not yet implemented")
}
}
}
object Nil : Bag<Nothing>() {
override fun iterator(): Iterator<Nothing> =
BagIterator()
}
data class Cons<out A>(val head: A, val tail: Bag<A>) : Bag<A>() {
override fun iterator(): Iterator<A> =
BagIterator()
}
Now I'm stuck with hasNext() and next() implementations. I'm not even sure if this approach works. Can I implement Iterable this way?
Note that an
Iterator
is a mutable thing.next
must mutate the iterator's current state. Its signature does not allow you to "return a newIterator
with a different state". So if you wanted to do that, sad news for you :( This is because the way that iteration is supposed to happen is (this is roughly what afor
loop translates to):Now knowing that, we can store a
var current: Bag<A>
:And the
Nil
andCons
types can have empty bodies.If you don't like this, blame the standard library designers :) You can always write your own
Iterator<A>
interface, but of course you can't use thefor
loop with yourBag
if you do that. You can write your ownforEach
extension function though.