Need help in matching phrases in the data given below where I need to match phrases from both TextA and TextB.
The following code did not helped me in doing it how can I address this I had 100s of them to match
#sorting jumbled phrases
def sorts(string_value):
sorted_string = sorted(string_value.split())
sorted_string = ' '.join(sorted_string)
return sorted_string
#Removing punctuations in string
punc = '''!()-[]{};:'"\,<>./?@#$%^&*_~'''
def punt(test_str):
for ele in test_str:
if ele in punc:
test_str = test_str.replace(ele, "")
return(test_str)
#matching strings
def lets_match(x):
for text1 in TextA:
for text2 in TextB:
try:
if sorts(punt(x[text1.casefold()])) == sorts(punt(x[text2.casefold()])):
return True
except:
continue
return False
df['result'] = df.apply(lets_match,axis =1)
even after implementing string sort, removing punctuations and case sensitivity I am still getting those strings as not matching. I am I missing something here can some help me in achieving it
Is there any issues with using the fuzzy match lib? The implementation is pretty straight forward and works well given the above data is relatively similar. I've performed the below without preprocessing.