I have a dataframe like this in Pandas:
# https://www.datasciencemadesimple.com/reshape-long-wide-pandas-python-pivot-function/
import pandas as pd
import numpy as np
from platform import python_version
print(python_version()) #3.7.7
#Create a DataFrame
d = {'countries':['A','B','C','A','B','C'],
'continent': ['Europe', 'Asia','Africa', 'Europe', 'Asia','Africa'],
'metrics':['population_in_million','population_in_million','population_in_million',
'gdp_percapita','gdp_percapita','gdp_percapita'],
'values':[100,200,120,2000,7000,15000] }
df = pd.DataFrame(d,columns=['countries','continent','metrics','values'])
df
and I turned it to a wide dataframe using this code:
# https://stackoverflow.com/questions/47178861/pandas-long-to-wide-format-with-multi-index
test_df = pd.DataFrame(df.pivot_table(index=['countries', 'continent'], columns='metrics', values='values'))
test_df = test_df.reset_index()
test_df
I am looking for a way to remove 'metrics'. Previous answers did not help. My Python version is 3.7.7

You should be able to do that by dropping the name of the "columns", i.e.
or alternatively, using inbuilt Pandas methods:
mapperis the value you want to set the name to,axisis 1 because you're looking at the column name, and you can also specifyinplace=True if you want to replace the current name with reassignment.