I believe the Berlekamp Welch algorithm can be used to correctly construct the secret using Shamir Secret Share as long as $t<n/3$. How can we speed up the BW algorithm implementation using Fast Fourier transform?
Speeding up Berlekamp Welch algorithm using FFT for Shamir Secret Share
284 Views Asked by Ordinary AtThere are 2 best solutions below
On
In coding theory, the Welch-Berlekamp key equation is a interpolation problem, i.e. w(x)s(x) = n(x) for x = x_1, x_2, ...,x_m, where s(x) is known. Its solution is a polynomial pair (w(x), n(x)) satisfying deg(n(x)) < deg(w(x)) <= m/2. (Here m is even)
The Welch-Berlekamp algorithm is an algorithm for solving this with O(m^2). On the other hand, D.B. Blake et al. described the solution set as a module of rank 2 and gave an another algorithm (called modular approach) with O(m^2). You can see the paper (DOI: 10.1109/18.391235)
Over binary fields, FFT is complex since the size of the multiplicative group cannot be a power of 2. However, Lin, et al. give a new polynomial basis such that the FFT transforms over binary fields is with complexity O(nlogn). Furthermore, this method has been used in decoding Reed-Solomon (RS) codes in which a modular approach is taken. This modular approach takes the advantages of FFT such that its complexity is O(nlog^2n). This is the best complexity to date. The details are in (DOI: 10.1109/TCOMM.2022.3215998) and in (https://arxiv.org/abs/2207.11079, open access).
To sum up, this exists a fast modular approach which uses FFT and is capable of solving the interpolation problem in RS decoding. You should metion that this method requires that the evaluation set to be a subspace v or v + a. Maybe the above information is helpful.
Berlekamp Welch is used to correct errors for the original encoding scheme for Reed Solomon code, where there is a fixed set of data points known to encoder and decoder, and a polynomial based on the message to be transmitted, unknown to the decoder. This approach was mostly replaced by switching to a BCH type code where a fixed polynomial known to both encoder and decoder is used instead.
Berlekamp Welch inverts a matrix with time complexity O(n^3). Gao improved on this, reducing time complexity to O(n^2) based on extended Euclid algorithm. Note that the R[-1] product series is pre-computed based on the fixed set of data points, in order to achieve the O(n^2) time complexity. Link to the Wiki section on "original view" decoders.
https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Reed_Solomon_original_view_decoders
Discreet Fourier essentially is the same as the encoding process, except there is a constraint on the fixed data points for encoding (they need to be successive powers of the field primitive) in order for the inverse transform to work. The inverse transform only works if the received data is error free. Lagrange interpolation doesn't have the constraint on the data points, and doesn't require the received data to be error free. Wiki has a section on this also:
https://en.wikipedia.org/wiki/Reed%E2%80%93Solomon_error_correction#Discrete_Fourier_transform_and_its_inverse