So I've been playing around with OpenLog Artemis that has ICM-20948 IMU. I want to calculate absolute coordinates using that 9DoF IMU (it provides me with an accelerometer, gyro, and magnetometer data). I've been using trigonometry for that but it exposes me to gimbal lock and who knows what other problems. Searching the internet I found that people for such IMUs use the MadgwickQuaternionUpdate algorithm for those calculations.
So, here is what I'm doing in the while loop:
next_log_data(bus, parser); // parse IMU data from serial port
MadgwickQuaternionUpdate(&q, 0.016666,
parser->state->aX / 1000, parser->state->aY / 1000, parser->state->aZ / 1000,
toRadians(parser->state->gX), toRadians(parser->state->gY), toRadians(parser->state->gZ),
parser->state->mX, parser->state->mY, parser->state->mZ);
printQuat(q);
euler_angles_t euler = quatToEuler(q);
printEuler(euler);
Here is my quatToEuler function
euler_angles_t quatToEuler(const quaternion_t q){
euler_angles_t to_return;
to_return.yaw = atan2(2.0f * (q.x * q.y + q.w * q.z), q.w * q.w + q.x * q.x - q.y * q.y - q.z * q.z);
to_return.pitch = -asin(2.0f * (q.x * q.z - q.w * q.y));
to_return.roll = atan2(2.0f * (q.w * q.x + q.y * q.z), q.w * q.w - q.x * q.x - q.y * q.y + q.z * q.z);
to_return.pitch *= 180.0f / M_PI;
to_return.yaw *= 180.0f / M_PI;
to_return.roll *= 180.0f / M_PI;
return to_return;
}
And here is my MadgwickQuaternionUpdate function
void MadgwickQuaternionUpdate(quaternion_t *q, const float delta_t, float ax, float ay, float az, float gx, float gy, float gz, float mx, float my, float mz)
{
float q1 = q->w, q2 = q->x, q3 = q->y, q4 = q->z; // short name local variable for readability
float norm;
float hx, hy, _2bx, _2bz;
float s1, s2, s3, s4;
float qDot1, qDot2, qDot3, qDot4;
// Auxiliary variables to avoid repeated arithmetic
float _2q1mx;
float _2q1my;
float _2q1mz;
float _2q2mx;
float _4bx;
float _4bz;
float _2q1 = 2.0f * q1;
float _2q2 = 2.0f * q2;
float _2q3 = 2.0f * q3;
float _2q4 = 2.0f * q4;
float _2q1q3 = 2.0f * q1 * q3;
float _2q3q4 = 2.0f * q3 * q4;
float q1q1 = q1 * q1;
float q1q2 = q1 * q2;
float q1q3 = q1 * q3;
float q1q4 = q1 * q4;
float q2q2 = q2 * q2;
float q2q3 = q2 * q3;
float q2q4 = q2 * q4;
float q3q3 = q3 * q3;
float q3q4 = q3 * q4;
float q4q4 = q4 * q4;
// Normalise accelerometer measurement
norm = sqrt(ax * ax + ay * ay + az * az);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
ax *= norm;
ay *= norm;
az *= norm;
// Normalise magnetometer measurement
norm = sqrt(mx * mx + my * my + mz * mz);
if (norm == 0.0f) return; // handle NaN
norm = 1.0f/norm;
mx *= norm;
my *= norm;
mz *= norm;
// Reference direction of Earth's magnetic field
_2q1mx = 2.0f * q1 * mx;
_2q1my = 2.0f * q1 * my;
_2q1mz = 2.0f * q1 * mz;
_2q2mx = 2.0f * q2 * mx;
hx = mx * q1q1 - _2q1my * q4 + _2q1mz * q3 + mx * q2q2 + _2q2 * my * q3 + _2q2 * mz * q4 - mx * q3q3 - mx * q4q4;
hy = _2q1mx * q4 + my * q1q1 - _2q1mz * q2 + _2q2mx * q3 - my * q2q2 + my * q3q3 + _2q3 * mz * q4 - my * q4q4;
_2bx = sqrt(hx * hx + hy * hy);
_2bz = -_2q1mx * q3 + _2q1my * q2 + mz * q1q1 + _2q2mx * q4 - mz * q2q2 + _2q3 * my * q4 - mz * q3q3 + mz * q4q4;
_4bx = 2.0f * _2bx;
_4bz = 2.0f * _2bz;
// Gradient decent algorithm corrective step
s1 = -_2q3 * (2.0f * q2q4 - _2q1q3 - ax) + _2q2 * (2.0f * q1q2 + _2q3q4 - ay) - _2bz * q3 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q4 + _2bz * q2) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q3 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s2 = _2q4 * (2.0f * q2q4 - _2q1q3 - ax) + _2q1 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q2 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + _2bz * q4 * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q3 + _2bz * q1) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q4 - _4bz * q2) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s3 = -_2q1 * (2.0f * q2q4 - _2q1q3 - ax) + _2q4 * (2.0f * q1q2 + _2q3q4 - ay) - 4.0f * q3 * (1.0f - 2.0f * q2q2 - 2.0f * q3q3 - az) + (-_4bx * q3 - _2bz * q1) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (_2bx * q2 + _2bz * q4) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + (_2bx * q1 - _4bz * q3) * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
s4 = _2q2 * (2.0f * q2q4 - _2q1q3 - ax) + _2q3 * (2.0f * q1q2 + _2q3q4 - ay) + (-_4bx * q4 + _2bz * q2) * (_2bx * (0.5f - q3q3 - q4q4) + _2bz * (q2q4 - q1q3) - mx) + (-_2bx * q1 + _2bz * q3) * (_2bx * (q2q3 - q1q4) + _2bz * (q1q2 + q3q4) - my) + _2bx * q2 * (_2bx * (q1q3 + q2q4) + _2bz * (0.5f - q2q2 - q3q3) - mz);
norm = sqrt(s1 * s1 + s2 * s2 + s3 * s3 + s4 * s4); // normalise step magnitude
norm = 1.0f/norm;
s1 *= norm;
s2 *= norm;
s3 *= norm;
s4 *= norm;
// Compute rate of change of quaternion
qDot1 = 0.5f * (-q2 * gx - q3 * gy - q4 * gz) - beta * s1;
qDot2 = 0.5f * (q1 * gx + q3 * gz - q4 * gy) - beta * s2;
qDot3 = 0.5f * (q1 * gy - q2 * gz + q4 * gx) - beta * s3;
qDot4 = 0.5f * (q1 * gz + q2 * gy - q3 * gx) - beta * s4;
// Integrate to yield quaternion
q1 += qDot1 * delta_t;
q2 += qDot2 * delta_t;
q3 += qDot3 * delta_t;
q4 += qDot4 * delta_t;
norm = sqrt(q1 * q1 + q2 * q2 + q3 * q3 + q4 * q4); // normalise quaternion
norm = 1.0f/norm;
q->w = q1 * norm;
q->x = q2 * norm;
q->y = q3 * norm;
q->z = q4 * norm;
}
The quaternion q is (0.0, 0.0, 0.0, 1.0) at the beginning of the algorithm. Since I have no idea what beta is in that algorithm I've set it to 1. Also, I've set deltat to 0.016666 since it's a 60 Hz sensor -> every 0.0166666 seconds I get new data.
Can anyone explain to me what beta should be and how to find it?
Also, the algorithm does not seem to work as I would expect it to. For example, if the IMU is placed on the table the algorithm does output yaw pitch and roll in +-2° stable which is fine I would say. If I do the yaw rotation only it also works, but if I add roll or pitch to it, the yaw value changes even though it should not (and that's the same for every Euler rotation). This is basically what happens with trigonometry calculations.
I would very much appreciate your feedback!
Please let me know in the comments If I should provide some more information. Thank You for Your help and time! Here is a link to this project in my GitHub repo.