I wrote a Y combinator like such:
template <class F>
struct Y{
F f;
Y(F _f) : f{_f} {}
template<class...arg_t>
auto operator()(arg_t&&...arg) {return f(*this,std::forward<arg_t>(arg)...);}
};
It works, but when I tried to define a factorial
auto fact = Y{[](auto&& self, int n) {
if (n<=1) return 1;
return n*self(n-1);}};
it would compile, but when I called it like f(3) clang got stuck on deducing the return type. With an explicit return type, it all worked fine. Is this a limitation of the template deduction? Is there a work-around?
I don't believe there is a way around it. You create a lambda with the following definition:
This translates to:
Given that code, your compiler should deduce the return type as the common type of the 2 return statements.
With your template instation, it first needs to know the return type of your instantiation before it calculate the answer of that instantiation.
For this specific case, it might still be possible to deduce it correctly. What happens if you add extra indirections in between and recourse back to your type?