I am reading a book on λ-calculus "Functional programming Through Lambda Calculus" (Greg Michaelson). In the book the author introduces a short-hand notation for defining functions. For example
def identity = λx.x
and goes on saying that we should insist that when using such shorthand "all defined names should be replaced by their definitions before the expression is evaluated"
Later on, when introducing recursion he uses as an example a definition of the addition function such as:
def add x y = if iszero y then x else add (succ x) (pred y)
and goes to say, that had we not had the restriction mentioned above we would be able to evaluate this function by slowly expanding it. However since we have the restriction of replacing all defined names before the evaluation of the expression, we cannot do that since we go on indefinetely replacing add and thus the need of thinking about recursion in a more detailed way.
My question is thus the following: What are the theoritical or practical reasons for placing this restriction upon ourselves? (of having to replace all defined names before the evaluation of the function)? Are there any?
The reason is that we want to stay within the rules of the lambda calculus. Allowing names for terms to mean anything other than immediate substitution would mean adding a recursive let expression to the language, which would mean we would need a truly more expressive system (no longer the lambda calculus).
You can think of the names as no more than syntactic sugar for the original lambda term. The Y-combinator is exactly the way to introduce recursion into a system that does not have it built in. If the book you are currently reading confuses you, you might want search for some additional resources on the internet explaining the Y-combinator.