I started to implement a CORDIC algorithm from zero and I don't know what I'm missing, here's what I have so far.
import math
from __future__ import division
# angles
n = 5
angles = []
for i in range (0, n):
angles.append(math.atan(1/math.pow(2,i)))
# constants
kn = []
fator = 1.0
for i in range (0, n):
fator = fator * (1 / math.pow(1 + (2**(-i))**2, (1/2)))
kn.append(fator)
# taking an initial point p = (x,y) = (1,0)
z = math.pi/2 # Angle to be calculated
x = 1
y = 0
for i in range (0, n):
if (z < 0):
x = x + y*(2**(-1*i))
y = y - x*(2**(-1*i))
z = z + angles[i]
else:
x = x - y*(2**(-1*i))
y = y + x*(2**(-1*i))
z = z - angles[i]
x = x * kn[n-1]
y = y * kn[n-1]
print x, y
When I plug z = π/2 it returns 0.00883479322917 and 0.107149125055, which makes no sense. Any help will be great!
@edit, I made some changes and now my code has this lines instead of those ones
for i in range (0, n):
if (z < 0):
x = x0 + y0*(2**(-1*i))
y = y0 - x0*(2**(-1*i))
z = z + angles[i]
else:
x = x0 - y0*(2**(-1*i))
y = y0 + x0*(2**(-1*i))
z = z - angles[i]
x0 = x
y0 = y
x = x * kn[n-1]
y = y * kn[n-1]
Now it's working way better, I had the problem because I wasn't using temporary variables as x0 and y0, now when I plug z = pi/2 it gives me better numbers as (4.28270993661e-13, 1.0) :)