self.fc1 = nn.Linear(input_size, hidden_size)
self.relu = nn.ReLU()
self.fc2 = nn.Linear(hidden_size, num_classes)
def forward(self, x):
out = self.fc1(x)
out =out.detach().numpy()
out =rand_func(out)
out =out.from_numpy()
out = self.relu(out)
out = self.fc2(out)
RuntimeError: element 0 of tensors does not require grad and does not have a grad_fn