I'm trying to make a simple style copy net, combining two images. I'm a newbie and doing it from the example to get some experience in programming. The main idea is to copy style on the target image. Here's the code I wrote:
def preprocess(image_path):
img = load_img(image_path, target_size = (img_height, img_width))
img = img_to_array(img)
img = np.expand_dims(img, axis = 0)
img = vgg19.preprocess_input(img)
return img
def deprocess(x):
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('unit8')
return x
target_image = backend.variable(preprocess(target_image_path))
sr_image = backend.variable(preprocess(sr_image_path))
if backend.image_data_format() == 'channels_first':
combination_image = backend.placeholder((1,3,img_height, img_width))
else:
combination_image = backend.placeholder((1,img_height, img_width,3))
input_tensor = backend.concatenate([target_image, sr_image, combination_image], axis = 0)
model = vgg19.VGG19(input_tensor = input_tensor, weights = 'imagenet', include_top = False)
print('Model loaded successfully')
def content_loss(base, combination):
return backend.sum(backend.square(combination - base))
def gram_matrix(x):
features = backend.batch_flatten(backend.permute_dimensions(x, (2, 0, 1)))
gram = backend.dot(features, backend.transpose(features))
return gram
def style_loss(style, combination):
S = gram_matrix(style)
C = gram_matrix(combination)
channels = 3
size = img_height * img_width
return backend.sum(backend.square(S - C)) / (4.0 * (channels ** 2) * (size ** 2))
def total_variation_loss(x):
a = backend.square(
x[:, :img_height - 1, :img_width - 1, :] -
x[:, 1:, :img_width - 1, :])
b = backend.square(
x[:, :img_height - 1, :img_width - 1, :] -
x[:, :img_height - 1, 1:, :])
return backend.sum(backend.pow(a + b, 1.25))
outputs_dict = dict([(layer.name, layer.output) for layer in model.layers])
content_layer = 'block5_conv2'
style_layers = ['block1_conv1',
'block2_conv1',
'block3_conv1',
'block4_conv1',
'block5_conv1']
total_variation_weight = 1e-4
style_weight = 1.
content_weight = 0.025
loss = backend.variable(0.0)
layer_features = outputs_dict[content_layer]
target_image_features = layer_features[0, :, :, :]
combination_features = layer_features[2, :, :, :]
loss = loss + content_weight * content_loss(target_image_features, combination_features)
for layer_name in style_layers:
layer_features = outputs_dict[layer_name]
style_reference_features = layer_features[1, :, :, :]
combination_features = layer_features[2, :, :, :]
sl = style_loss(style_reference_features, combination_features)
loss = loss + (style_weight / len(style_layers)) * sl
loss += total_variation_weight * total_variation_loss(combination_image)
grads = backend.gradients(loss, combination_image)
outputs = [loss]
if isinstance(grads, (list,tuple)):
outputs += grads
else:
outputs.append(grads)
f_outputs = backend.function([combination_image], outputs)
def eval_loss_and_grads(x):
if backend.image_data_format() == 'channels_first':
x = x.reshape((1, 3, img_height, img_width))
else:
x = x.reshape((1, img_height, img_width, 3))
outs = f_outputs([x])
loss_value = outs[0]
if len(outs[1:]) == 1:
grad_values = outs[1].flatten().astype('float64')
else:
grad_values = np.array(outs[1:]).flatten().astype('float64')
return loss_value, grad_values
class Evaluator(object):
def _unit_(self):
self.loss_value = None
self.grads_values = None
def loss(self, x):
assert self.loss_value is None
loss_value, grad_values = eval_loss_and_grads(x)
self.loss_value = loss_value
self.grads_values = grad_values
return self.loss_value
def grads(self, x):
assert self.loss_value is not None
grad_values = np.copy(self.grad_values)
self.loss_value = None
self.grad_values = None
return grad_values
evaluator = Evaluator()
result_prefix = 'result'
iterations = 20
x = preprocess(target_image_path)
x = x.flatten()
for i in range(iterations):
print('Start of iterations', i)
start_time = time.time()
x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x,
fprime = evaluator.grads, maxfun = 20)
print('Current loss value:', min_val)
img = x.copy().reshape((img_height, img_width, 3))
img = deprocess(img)
fname = result_prefix + '_at_iteration_%d.png' % i
save_img('D:\study\Stylecopy\fmane', img)
print('image saved as:', fname)
end_time = time.time()
print(' Iteration %d completed in %ds' % (i , end_time - start_time))
Here's the error I got:
AttributeError Traceback (most recent call last)
~\AppData\Local\Temp/ipykernel_12264/556996678.py in <module>
7 print('Start of iterations', i)
8 start_time = time.time()
----> 9 x, min_val, info = fmin_l_bfgs_b(evaluator.loss, x,
10 fprime = evaluator.grads, maxfun = 20)
11 print('Current loss value:', min_val)
~\anaconda3\envs\CNN_base\lib\site-packages\scipy\optimize\lbfgsb.py in fmin_l_bfgs_b(func, x0, fprime, args, approx_grad, bounds, m, factr, pgtol, epsilon, iprint, maxfun, maxiter, disp, callback, maxls)
195 'maxls': maxls}
196
--> 197 res = _minimize_lbfgsb(fun, x0, args=args, jac=jac, bounds=bounds,
198 **opts)
199 d = {'grad': res['jac'],
~\anaconda3\envs\CNN_base\lib\site-packages\scipy\optimize\lbfgsb.py in _minimize_lbfgsb(fun, x0, args, jac, bounds, disp, maxcor, ftol, gtol, eps, maxfun, maxiter, iprint, callback, maxls, finite_diff_rel_step, **unknown_options)
304 iprint = disp
305
--> 306 sf = _prepare_scalar_function(fun, x0, jac=jac, args=args, epsilon=eps,
307 bounds=new_bounds,
308 finite_diff_rel_step=finite_diff_rel_step)
~\anaconda3\envs\CNN_base\lib\site-packages\scipy\optimize\optimize.py in _prepare_scalar_function(fun, x0, jac, args, bounds, epsilon, finite_diff_rel_step, hess)
259 # ScalarFunction caches. Reuse of fun(x) during grad
260 # calculation reduces overall function evaluations.
--> 261 sf = ScalarFunction(fun, x0, args, grad, hess,
262 finite_diff_rel_step, bounds, epsilon=epsilon)
263
~\anaconda3\envs\CNN_base\lib\site-packages\scipy\optimize\_differentiable_functions.py in __init__(self, fun, x0, args, grad, hess, finite_diff_rel_step, finite_diff_bounds, epsilon)
138
139 self._update_fun_impl = update_fun
--> 140 self._update_fun()
141
142 # Gradient evaluation
~\anaconda3\envs\CNN_base\lib\site-packages\scipy\optimize\_differentiable_functions.py in _update_fun(self)
231 def _update_fun(self):
232 if not self.f_updated:
--> 233 self._update_fun_impl()
234 self.f_updated = True
235
~\anaconda3\envs\CNN_base\lib\site-packages\scipy\optimize\_differentiable_functions.py in update_fun()
135
136 def update_fun():
--> 137 self.f = fun_wrapped(self.x)
138
139 self._update_fun_impl = update_fun
~\anaconda3\envs\CNN_base\lib\site-packages\scipy\optimize\_differentiable_functions.py in fun_wrapped(x)
132 # Overwriting results in undefined behaviour because
133 # fun(self.x) will change self.x, with the two no longer linked.
--> 134 return fun(np.copy(x), *args)
135
136 def update_fun():
~\AppData\Local\Temp/ipykernel_12264/3220866978.py in loss(self, x)
29
30 def loss(self, x):
---> 31 assert self.loss_value is None
32 loss_value, grad_values = eval_loss_and_grads(x)
33 self.loss_value = loss_value
AttributeError: 'Evaluator' object has no attribute 'loss_value'
I'm dealing with this problem and don't know how to solve it. I've double checked the code with the example (https://www.kaggle.com/code/gabrieltangzy/p2p-gan-newver-slice-cezanne), but haven't found any mistakes. I suppose it may occur because of difference in python versions. I use 3.9.7