I'm doing x86-64 binary obfuscation research and fundamentally one of the key challenges in the offense / defense cat and mouse game of executing a known-bad program and detecting it (even when obfuscated) is system call sequence analysis.

Put simply, obfuscation is just achieving the same effects on the system through a different sequence of instructions and memory states in order to minimize observable analysis channels. But at the end of the day, you need to execute certain system calls in a certain order to achieve certain input / output behaviors for a program.

Or do you? The question I want to study is this: Could the intended outcome of some or all system calls be achieved through different system calls? Let's say system call D, when executed 3 times consecutively, with certain parameters can be heuristically attributed to malicious behavior. If system calls A, B, and C could be found to achieve the same effect (perhaps in addition to other side-effects) desired from system call D, then it would be possible to evade kernel hooks designed to trace and heuristically analyze system call sequences.

To determine how often this system call outcome overlap exists in a given OS, I don't want to use documentation and manual analysis for a few reasons:

  • undocumented behavior
  • lots of work, repeated for every OS and even different versions

So rather, I'm interested in performing black-box analysis to fuzz system calls with various arguments and observing the effects. My problem is I'm not sure how to measure the effects. Once I execute a system call, what mechanism could I use to observe exactly which changes result from it? Is there any reliable way, aside from completely iterating over entire forensic snapshots of the machine before and after?

0

There are 0 best solutions below