I am trying to do a lagged autocorrelation of some data. The data is filled with random nans. The data is an NxN array where eke_array[i,i] is lag zero,...eke_array[i,i+n] is lag n. At some point this starts to return an autocorrelation greater than 1 especially after lag 40 but the first few lags are giving a reasonable correlation.
Here is the function I implemented:
def auto_corr(eke_array):
nlag = np.shape(eke_array)[0]
eke_lag_0 = []
auto_store = []
std_store = []
for mylag in range(0,80):
autocorr = 0
numvalid = 0
norm = 0
std = 0
for i in range(0, 105):
if i+mylag > 104:
break
lag0 = eke_array[i,i]
lag_itt = eke_array[i,i+mylag]
if not np.isnan(lag_itt):
if not np.isnan(lag0):
numvalid += 1
diff = lag0 - lag_itt
std = std + diff**2
autocorr = autocorr + lag0*lag_itt
print(numvalid, mylag,i )
auto_store.append((autocorr/numvalid))
std_store.append(std / numvalid)
for k in range(105):
eke_lag_0.append(eke_array[k,k])
eke_lag_0 = np.asarray(eke_lag_0)
eke_lag_0 = eke_lag_0[~np.isnan(eke_lag_0)]
norm = np.sum(eke_lag_0 ** 2) / np.size(eke_lag_0)
std_store = np.sqrt(np.asarray(std_store))
auto_store = auto_store/norm
return std_store, auto_store, norm
I was normalizing in the wrong way. This is a cross correlation, so the normalization is the standard deviation of the two lagged time series.