I am following this LSTM Model: https://machinelearningmastery.com/how-to-develop-rnn-models-for-human-activity-recognition-time-series-classification/#:~:text=(scores)-,Complete%20Example,-Now%20that%20we
All my extracted features, labels of train and test set and the LSTM models are in the same folder.
LSTM requires 3D tensors = [samples, timesteps, fetaures]. But my train_features.csv file is 2D (i.e. 9000 x 861). How do I restructure it to pass it onto LSTM? Also, do I directly one-hot encode the features csv?
My train_labels.csv is 9000 x 1
My directory is as follows:
├── published_data
│ ├── labels
│ │ ├── 1_ann.csv
│ │ ├── 2_ann.csv
│ │ └── (25 files of labels)
│ ├── skeletal_keypoints
│ │ ├── 1_keypoint.csv
│ │ ├── 2_keypoint.csv
│ │ └── (25 files of skeletal data)
│ └── video
│ ├── 1.mts
│ ├── 2.mts
│ └── (25 video files)
└── Models
└── LSTM
├── extract_data_LSTM.py
├── test_features.csv
├── test_ids.csv
├── test_labels.csv
├── train_features.csv
├── train_ids.csv
├── train_labels.csv
└── LSTM_model.ipynb