I'm a student coding in Python and trying to solve the folowing delayed differential equation:
<a href="http://www.codecogs.com/eqnedit.php?latex=\left\{\begin{array}{l}\dot{v}(t)=&space;y(t)&space;\\&space;\dot{y}(t)=&space;\frac{a_1\alpha}{\omega_1}.y(t-\tau)).\{1-tanh^2[v(t-\tau)]\}&space;-&space;v(t)-\frac{1}{Q_1}.y(t)&space;\end{array}\right.\\&space;\\&space;(a_1&space;=&space;70,&space;\quad&space;Q_1&space;=&space;50,&space;\quad&space;\omega_1&space;=&space;2260,&space;\quad&space;\alpha&space;=&space;10,&space;\quad&space;\tau&space;\in&space;[0,8e-3])" target="_blank"><img src="http://latex.codecogs.com/gif.latex?\left\{\begin{array}{l}\dot{v}(t)=&space;y(t)&space;\\&space;\dot{y}(t)=&space;\frac{a_1\alpha}{\omega_1}.y(t-\tau)).\{1-tanh^2[v(t-\tau)]\}&space;-&space;v(t)-\frac{1}{Q_1}.y(t)&space;\end{array}\right.\\&space;\\&space;(a_1&space;=&space;70,&space;\quad&space;Q_1&space;=&space;50,&space;\quad&space;\omega_1&space;=&space;2260,&space;\quad&space;\alpha&space;=&space;10,&space;\quad&space;\tau&space;\in&space;[0,8e-3])" title="\left\{\begin{array}{l}\dot{v}(t)= y(t) \\ \dot{y}(t)= \frac{a_1\alpha}{\omega_1}.y(t-\tau)).\{1-tanh^2[v(t-\tau)]\} - v(t)-\frac{1}{Q_1}.y(t) \end{array}\right.\\ \\ (a_1 = 70, \quad Q_1 = 50, \quad \omega_1 = 2260, \quad \alpha = 10, \quad \tau \in [0,8e-3])" /></a>
I wanted to use JiTCDDE, but didn’t succeed to find a way to adapt the system, even after studying the examples in the documentation of the module. The major problem I have is that I don’t understand how to deal with the second equation containing y and v at the same time.
The goal is to plot the bifurcation diagram of the system (v as a function of τ). Am I using the wrong tool? Or is there a way to use JiTCDDE in my situation?
You can implement multidimensional systems by using the first argument of
yto indicate which component you want to use. Also, your definition of the right-hand side of the differential equation must have two components.For instance, you can implement your example as follows:
What is v in your equation is now
y(0); y has becomey(1).There is an example for a second-order differential equation such as yours in the accompanying paper (preprint).