can someone help me on how to increase the size of images from feature map extracted? i recently run CNN on set of images and would like to see the feature extracted. I manage to extract it but unable to actually see it because it was too small. My code:
from matplotlib import pyplot
#summarize feature map shapes
for i in range(len(cnn.layers)):
layer = cnn.layers[i]
#check fr conv layer
if 'conv' not in layer.name:
continue
print(i, layer.name,layer.output.shape)
from keras import models
from keras.preprocessing import image
model_new = models.Model(inputs=cnn.inputs, outputs=cnn.layers[1].output)
img_path = 'train/1/2NbeGPsQf2Q - 4 0.jpg'
img = image.load_img(img_path, target_size=(img_rows, img_cols))
import numpy as np
from keras.applications.imagenet_utils import decode_predictions, preprocess_input
img = image.img_to_array(img)
img = np.expand_dims(img, axis=0)
img = preprocess_input(img)
features = model_new.predict(img)
square = 10
ix = 1
for _ in range(square):
for _ in range(square):
# specify subplot and turn of axis
ax = pyplot.subplot(square, square, ix)
ax.set_xticks([])
ax.set_yticks([])
# plot filter channel in colour
pyplot.imshow(features[0, :, :, ix-1], cmap='viridis')
ix += 1
# show the figure
pyplot.show()
the result is at attached.output of feature map layer 1
its too small. How can i make it bigger so i can see what actually is there?
Appreciate for any input. Thanks!