I'm trying to calculate the shadow prices for the various constraints and place them in a dictionary following the form c[i]:sp[i] where c is the name of a specific constraint and sp is the numeric shadow price value. I am able to get "apm_lam.txt" to generate locally, but the shape of the of the array is 506, which is way more than the number of constraints that should have been added to the model (I'm counting like 60-something).
Is there an easy to tie-back the shadow prices in this output file to the actual named constraints in the Gekko model?
import numpy as np
import pandas as pd
from gekko import GEKKO
m = GEKKO(remote=False)
m.options.NODES = 3
m.options.IMODE = 3
m.options.MAX_ITER = 1000
lnuc_weeks = [0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0]
min_promo_price = [3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,3]
max_promo_price = [3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5, 3.5,3.5, 3.5, 3.5, 3.5, 3.5, 3.5]
base_srp = [3.48, 3.48, 3.48, 3.48, 3.0799, 3.0799, 3.0799, 3.0799,3.0799, 3.0799, 3.0799, 3.0799, 3.0799, 3.0799, 3.0799, 3.0799, 3.0799, 3.0799, 3.0799]
lnuc_min_promo_price = 1.99
lnuc_max_promo_price = 1.99
coeff_fedi = [0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589,0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589, 0.022589]
coeff_feao = [0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995, 0.02929995]
coeff_diso = [0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338, 0.05292338]
sumproduct_base = [0.20560305, 0.24735297, 0.24957423, 0.23155435, 0.23424058,0.2368096 , 0.27567109, 0.27820648, 0.2826393 , 0.28660598, 0.28583971, 0.30238505, 0.31726649, 0.31428312, 0.31073792, 0.29036779, 0.32679041, 0.32156337, 0.24633734]
neg_ln = [[0.14842000515],[0.14842000512],[0.14842000515],[0.14842000512],[-0.10407483058],[0.43676249024],[0.43676249019],[0.43676249024],[0.43676249019],[0.43676249024],[0.43676249019], [0.026284840258],[0.026284840291],[0.026284840258],[0.026284840291], [0.026185109811],[0.026284840258],[0.026284840291],[0.026284840258]]
neg_ln_ppi_coeff = [1.22293879, 1.22293879, 1.22293879, 1.22293879, 1.22293879,1.22293879, 1.22293879, 1.22293879, 1.22293879, 1.22293879, 1.22293879, 1.22293879, 1.22293879, 1.22293879, 1.22293879,1.22293879, 1.22293879, 1.22293879, 1.22293879]
base_volume = [124.38, 193.2, 578.72, 183.88, 197.42, 559.01, 67.68, 110.01,60.38, 177.11, 102.65, 66.02, 209.83, 81.22, 250.44, 206.44, 87.99, 298.95, 71.07]
week = pd.Series([13, 14, 17, 18, 19, 26, 28, 33, 34, 35, 39, 42, 45, 46, 47, 48, 50, 51, 52])
n = 19
cons = []
shadow = []
x1 = m.Array(m.Var,(n), integer=True) #LNUC weeks
i = 0
for xi in x1:
xi.value = lnuc_weeks[i]
xi.lower = 0
xi.upper = lnuc_weeks[i]
i += 1
x2 = m.Array(m.Var,(n)) #Blended SRP
i = 0
for xi in x2:
xi.value = 5
m.Equation(xi >= m.if3((x1[i]) - 0.5, min_promo_price[i], lnuc_min_promo_price))
m.Equation(xi <= m.if3((x1[i]) - 0.5, max_promo_price[i], lnuc_max_promo_price))
i += 1
x3 = m.Array(m.Var,(n), integer=True) #F&D
x4 = m.Array(m.Var,(n), integer=True) #FO
x5 = m.Array(m.Var,(n), integer=True) #DO
x6 = m.Array(m.Var,(n), integer=True) #TPR
#Default to F&D
i = 0
for xi in x3:
xi.value = 1
xi.lower = 0
xi.upper = 1
i += 1
i = 0
for xi in x4:
xi.value = 0
xi.lower = 0
xi.upper = 1
i += 1
i = 0
for xi in x5:
xi.value = 0
xi.lower = 0
xi.upper = 1
i += 1
i = 0
for xi in x6:
xi.value = 0
xi.lower = 0
xi.upper = 1
i += 1
x7 = m.Array(m.Var,(n), integer=True) #Max promos
i = 0
for xi in x7:
xi.value = 1
xi.lower = 0
xi.upper = 1
i += 1
x = [x1,x2,x3,x4,x5,x6,x7]
neg_ln=[m.Intermediate(-m.log(x[1][i]/base_srp[i])) for i in range(n)]
total_vol_fedi =[m.Intermediate(coeff_fedi[0]+ sumproduct_base[i] + (neg_ln[i]*neg_ln_ppi_coeff[0])) for i in range(n)]
total_vol_feao =[m.Intermediate(coeff_feao[0]+ sumproduct_base[i] + (neg_ln[i]*neg_ln_ppi_coeff[0])) for i in range(n)]
total_vol_diso =[m.Intermediate(coeff_diso[0]+ sumproduct_base[i] + (neg_ln[i]*neg_ln_ppi_coeff[0])) for i in range(n)]
total_vol_tpro =[m.Intermediate(sumproduct_base[i] + (neg_ln[i]*neg_ln_ppi_coeff[0])) for i in range(n)]
simu_total_volume = [m.Intermediate((
(m.max2(0,base_volume[i]*(m.exp(total_vol_fedi[i])-1)) * x[2][i] +
m.max2(0,base_volume[i]*(m.exp(total_vol_feao[i])-1)) * x[3][i] +
m.max2(0,base_volume[i]*(m.exp(total_vol_diso[i])-1)) * x[4][i] +
m.max2(0,base_volume[i]*(m.exp(total_vol_tpro[i])-1)) * x[5][i]) + base_volume[i]) * x[6][i]) for i in range(n)]
[m.Equation(x3[i] + x4[i] + x5[i] + x6[i] == 1) for i in range(i)]
#Limit max promos
m.Equation(sum(x7)<=10)
#Enforce spacing and duration
s=1
for s2 in range(1, s+1):
for i in range(0, n-s2):
f = week[week == week[i] + s2].index
if len(f) > 0:
m.Equation(x7[i] + x7[f[0]]<=1)
m.Maximize(m.sum(simu_total_volume))
m.options.SOLVER=3
m.options.DIAGLEVEL = 2
m.solve(disp = True, debug=True)
df = pd.concat([pd.Series(week), pd.Series([i[0] for i in x7]), pd.Series([i[0] for i in simu_total_volume])], axis=1)
df.columns = ['week', 'x7', 'total_volume']
df[df['x7']>0]
m.open_folder()
lam = np.loadtxt(m.path+'/apm_lam.txt')
print(lam.shape)
Additional information on the constraints is given in the
rto_4_eqn.txtfile in the run directory whenremote=False. Add this code afterm.solve()to view a report on the equations:For different modes of operation, the first 3 characters of the file change.
Look for the section on ACTIVE EQUATIONS with 506 equations.
A more detailed report of each equation is in the file
rto_4_eqn_var.txtthat includes a report on each variable that is in the equation. Inequality constraints are converted to equality constraints with an additional slack variable so the equations ingk0_model.apmmay look different from those that are written in the Python file. Some of these equations are also from objects such as them.if3()function.