How to specify the physical CoreIDs used for "CLOSE" when specifying OMP_PROC_BIND?

115 Views Asked by At

We are trying to optimize HPC applications using OpenMP on a new hardware platform. These applications need precise placement/pinning of their cores or performance falls in half. Currently, we provide the user a custom GOMP_CPU_AFFINITY map for each platform, but this is cumbersome, because it's different on each hardware version, and even platforms with different firmware versions sometimes change their CoreID physical mappings - all things impossible for the user to detect on the fly.

It would be a great help if HPC applications could simply set GOMP_PROC_BIND to "close" and OpenMP would do the right thing for the given platform - but to make this possible, the hardware vendor would need to define what "close" means for each machine. We'd like to do this, but we can't tell how/where OpenMP gets CoreID lists to use for things like close, spread, etc. (For various external requirements, the CoreID spatial pattern on this machine would appear utterly random to a software writer.)

Any advice as to where/how OpenMP defines the CoreID lists for OMP_PROC_BIND so we could configure them? We are comfortable with the idea that we might need a custom version of OpenMP (with altered source code) for this platform if needed.

Thanks, everyone. :)

  • Jeff
1

There are 1 best solutions below

0
Jim Cownie On

Expanding on what @VictorEijkhout said...

You seem have invented an envirable that I can't find anywhere with Google (GOMP_PROC_BIND), with the OpenMP standard envirable (OMP_PROC_BIND). If GOMP_PROC_BIND exists the name suggests that it is a GNU feature. Note too that one of the two Google hits for GOMP_PROC_BIND says "Code that reads the setting is buggy. Setting is invalid and ignored at runtime." So, if you are setting that it is unsurprising that it has no effect!

I will therefore answer for the more general case of OMP_PROC_BIND.

The binding of OpenMP threads to logicalCPUs clearly has to be done at runtime, since, beyond its ISA, the compiler has no knowledge of the hardware on which the compiled code will run. Therefore you need to be looking at the runtime library code.

I have not looked at GNU's libgomp, but, where it can, LLVM's libomp uses the hwloc library to explore the machine hardware. Since hwloc also includes other useful tools for machine exploration (such as lstopo) it is likely that your effort is best invested in ensuring good hwloc support on your machine, at which point there will be no need to delve inside the OpenMP runtime.