I was looking at this page and I saw that the terms of this polynomial:
0xad0424f3 = x^32 +x^30 +x^28 +x^27 +x^25 +x^19 +x^14 +x^11 +x^8 +x^7 +x^6 +x^5 +x^2 +x +1
which seems not correct since converting the Hex:
0xad0424f3is10101101000001000010010011110011
It would become:
x^31+ x^29+ x^27+ x^26+ x^24+ x^18+ x^13+ x^10+ x^7+ x^6+ x^5+ x^4+ x^1+ x^0
Can you help me understand which one is correct? what about 64 bit ECMA polynomial,
0xC96C5795D7870F42
I want to know the number of terms in each polynomial 0xad0424f3 and 0xC96C5795D7870F42.
That page is on Koopman's web site, where he has his own notation for CRC polynomials. Since all CRC polynomials have a 1 term, he drops that term, divides the polynomial by x, and represents that in binary. That's what you're looking at.
The benefit is that with a 64-bit word, you can then represent all 64-bit and shorter CRC polynomials, with the length of the CRC denoted by the most significant 1 in the word.
The downside is that only Koopman uses that notation, as far as I know, resulting in some confusion by others. Like yourself.
As for your 64-bit CRC, that polynomial that you note is from the Wikipedia page is actually the reversed version, and is not in Koopman's notation. The expansion into a polynomial is shown right there, underneath the hex representation. It has 34 terms.