I want to see the boxes and labels of the predictions made by the mobilenet_v2 model, here is my code so far:
import time
import torch
import numpy as np
from torchvision import models, transforms
import cv2
from PIL import Image
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 224)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 224)
cap.set(cv2.CAP_PROP_FPS, 36)
preprocess = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
net = models.quantization.mobilenet_v2(pretrained=True, quantize=False)
net = torch.jit.script(net)
started = time.time()
last_logged = time.time()
frame_count = 0
with torch.no_grad():
while True:
# read frame
ret, image = cap.read()
if not ret:
raise RuntimeError("failed to read frame")
# convert opencv output from BGR to RGB
image = image[:, :, [2, 1, 0]]
permuted = image
# preprocess
input_tensor = preprocess(image)
# create a mini-batch as expected by the model
input_batch = input_tensor.unsqueeze(0)
# run model
output = net(input_batch)
# I tried the code below in order to retrieve annotated images
annotated_frame = output[0].plot()
cv2.imshow("YOLOv8n Inference", annotated_frame)
I have tried to use this code in order to see the annotated images
annotated_frame = output[0].plot()
cv2.imshow("YOLOv8n Inference", annotated_frame)
but it returns: annotated_frame = output[0].plot() AttributeError: 'Tensor' object has no attribute 'plot'. Did you mean: 'float'?
indeed, after inspection, the output seems be a tensor of floats...
So, any idea on how to obtain the annotated frames ?
Thanks a lot!