0.Question can not get conv1 weights data in the bvlc_reference_caffenet_2.caffemodel.
1.info bvle/caffe:https://github.com/BVLC/caffe nvidia-caffe-version:0.17.3
2.convert train caffe model to test model:http://dl.caffe.berkeleyvision.org/bvlc_reference_caffenet.caffemodel prototxt:https://github.com/BVLC/caffe/blob/master/models/bvlc_reference_caffenet/deploy.prototxt code:
import caffe
net = caffe.Net('bvlc_reference_caffenet/deploy_2.prototxt', 'bvlc_reference_caffenet/bvlc_reference_caffenet.caffemodel', caffe.TEST)
new_net.save('bvlc_reference_caffenet/bvlc_reference_caffenet_2.caffemodel')
3.caffemodel test in the caffe container. everything is ok
armnn @container:~/caffe$ ls -lh models/bvlc_reference_caffenet/ total 698M -rw-r--r-- 1 armnn pfcgroup 233M Aug 8 10:47 bvlc_reference_caffenet.caffemodel -rw-r--r-- 1 armnn pfcgroup 233M Aug 8 11:41 bvlc_reference_caffenet_1.caffemodel -rw-r--r-- 1 armnn pfcgroup 233M Aug 10 07:23 bvlc_reference_caffenet_2.caffemodel -rw-r--r-- 1 armnn pfcgroup 2.9K Aug 8 09:10 deploy.prototxt -rw-r--r-- 1 armnn pfcgroup 2.8K Aug 15 08:07 deploy_1.prototxt -rw-r--r-- 1 armnn pfcgroup 2.9K Aug 15 08:07 deploy_2.prototxt -rw-r--r-- 1 armnn pfcgroup 1.3K Aug 8 09:10 readme.md -rw-r--r-- 1 armnn pfcgroup 315 Aug 8 09:10 solver.prototxt -rw-r--r-- 1 armnn pfcgroup 5.6K Aug 8 09:10 train_val.prototxt.
- show the caffemodel on the Netron
Netron: caffemodel weights Tensor data is empty.
5.deploy on armnn21.02 when using armnn parser caffemodel, cat not find out conv1 weights data in caffemodel. log details:
08-02 21:48:39.866 31795 31795 D armnn: Fatal: Armnn Error: Data blob at index 0 in layer conv1 has an unexpected size. Expected 34848 elements but got 0 elements.
7. deploy_2.prototxt
layer {
name: "data"
type: "Input"
top: "data"
input_param { shape: { dim: 1 dim: 3 dim: 227 dim: 227 } }
}
layer {
name: "conv1"
type: "Convolution"
bottom: "data"
top: "conv1"
convolution_param {
num_output: 96
kernel_size: 11
stride: 4
}
}
layer {
name: "relu1"
type: "ReLU"
bottom: "conv1"
top: "conv1"
}
layer {
name: "pool1"
type: "Pooling"
bottom: "conv1"
top: "pool1"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm1"
type: "LRN"
bottom: "pool1"
top: "norm1"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv2"
type: "Convolution"
bottom: "norm1"
top: "conv2"
convolution_param {
num_output: 256
pad: 2
kernel_size: 5
group: 2
}
}
layer {
name: "relu2"
type: "ReLU"
bottom: "conv2"
top: "conv2"
}
layer {
name: "pool2"
type: "Pooling"
bottom: "conv2"
top: "pool2"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "norm2"
type: "LRN"
bottom: "pool2"
top: "norm2"
lrn_param {
local_size: 5
alpha: 0.0001
beta: 0.75
}
}
layer {
name: "conv3"
type: "Convolution"
bottom: "norm2"
top: "conv3"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
}
}
layer {
name: "relu3"
type: "ReLU"
bottom: "conv3"
top: "conv3"
}
layer {
name: "conv4"
type: "Convolution"
bottom: "conv3"
top: "conv4"
convolution_param {
num_output: 384
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu4"
type: "ReLU"
bottom: "conv4"
top: "conv4"
}
layer {
name: "conv5"
type: "Convolution"
bottom: "conv4"
top: "conv5"
convolution_param {
num_output: 256
pad: 1
kernel_size: 3
group: 2
}
}
layer {
name: "relu5"
type: "ReLU"
bottom: "conv5"
top: "conv5"
}
layer {
name: "pool5"
type: "Pooling"
bottom: "conv5"
top: "pool5"
pooling_param {
pool: MAX
kernel_size: 3
stride: 2
}
}
layer {
name: "fc6"
type: "InnerProduct"
bottom: "pool5"
top: "fc6"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu6"
type: "ReLU"
bottom: "fc6"
top: "fc6"
}
layer {
name: "drop6"
type: "Dropout"
bottom: "fc6"
top: "fc6"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc7"
type: "InnerProduct"
bottom: "fc6"
top: "fc7"
inner_product_param {
num_output: 4096
}
}
layer {
name: "relu7"
type: "ReLU"
bottom: "fc7"
top: "fc7"
}
layer {
name: "drop7"
type: "Dropout"
bottom: "fc7"
top: "fc7"
dropout_param {
dropout_ratio: 0.5
}
}
layer {
name: "fc8"
type: "InnerProduct"
bottom: "fc7"
top: "fc8"
inner_product_param {
num_output: 1000
}
}
layer {
name: "prob"
type: "Softmax"
bottom: "fc8"
top: "prob"
}
bvlc_refernece_caffenet.caffemodeliscaffe1.0, but usingcaffev2to convert train model to deploy model according todeploy.proto.And of course, Netorn can support show the
caffemodelonly fromcaffev2.