I've been experimenting with the Curiously Recurring Template Pattern for a generic single-argument functor and have two implementations: one using a template template parameter which works and a second where I try to access the derived Functor::type in the interface class. In the latter example, the compiler (gcc 5.4.0) reports
error: no type named 'type' in 'struct Cube< double >'
template<class T, template<class> class Functor>
class FunctorInterface_1 {
private:
const Functor<T> &f_cref;
public:
FunctorInterface_1() : f_cref(static_cast<const Functor<T>&>(*this)) {}
T operator() ( T val ) const { return f_cref(val); }
}; // FunctorInterface_1 (works)
template<class Functor>
class FunctorInterface_2 {
private:
const Functor &f_cref;
public:
using Ftype = typename Functor::type;
FunctorInterface_2() : f_cref(static_cast<const Functor&>(*this)) {}
Ftype operator() ( Ftype val ) const { return f_cref(val); }
}; // FunctorInterface_2 (no type in Functor!)
I then try to compile with T=double in main() of the following two classes:
template<class T>
struct Square : public FunctorInterface_1<T,Square> {
T operator()( T val ) const { return val*val; }
}; // Square
template<class T>
struct Cube : public FunctorInterface_2<Cube<T>> {
using type = T;
T operator() ( T val ) const { return val*val*val; }
}; // Cube
Can the FunctorInterface_2/Cube example be modified to work, or is it necessary for the interface class to be templated on T as in the first example? Thanks!
EDIT: Using gcc -std=c++14, I can get the second example to compile and run by using auto return and argument types in FunctorInterface_1::operator(), however, as I understand, auto argument types are not part of the C++14 standard.
EDIT 2: Well I feel a bit thick. I just realized that I could template FunctorInterface_1::operator() on a new parameter, however, for the application I have in mind, I would really like my base class to be able to access types defined in the derived class.
When the line
is processed in the base class, the definition of
Functoris not available. Hence, you can't useFunctor::type.One way to get around this limitation is to define a traits class.
Working code: https://ideone.com/C1L4YW