I am sorry, but there is online documentation and examples and I'm still not understanding. I have a pandas df with an index of dates in datetime format (yyyy-mm-dd) and I'm trying to resample or reindex this dataframe based on a subset of dates in the same format (yyyy-mm-dd) that are in a list. I have converted the df.index values to datetime using:
dfmla.index = pd.to_datetime(dfmla.index)
I've tried various things and I keep getting NaN's after applying the reindex. I know this must be a datatypes problem and my df is in the form of:
df.dtypes
Out[30]:
month int64
mean_mon_flow float64
std_mon_flow float64
monthly_flow_ln float64
std_anomaly float64
dtype: object
My data looks like this:
df.head(5)
Out[31]:
month mean_mon_flow std_mon_flow monthly_flow_ln std_anomaly
date
1949-10-01 10 8.565828 0.216126 8.848631 1.308506
1949-11-01 11 8.598055 0.260254 8.368006 -0.883938
1949-12-01 12 8.612080 0.301156 8.384662 -0.755149
1950-08-01 8 8.614236 0.310865 8.173776 -1.416887
1950-09-01 9 8.663943 0.351730 8.437089 -0.644967
My month_list (list datatype) looks like this:
month_list[0:2]
Out[37]: ['1950-08-01', '1950-09-01']
I need my condensed, new reindexed df to look like this:
month mean_mon_flow std_mon_flow monthly_flow_ln std_anomaly
date
1950-08-01 8 8.614236 0.310865 8.173776 -1.416887
1950-09-01 9 8.663943 0.351730 8.437089 -0.644967
thank you for your suggestions,
If you're certain that all
month_listare in the index, you can dodf.loc[month_list], else you can usereindex:Output: