- If the input data entries are around 10 raised to power of 9, do we keep the size of the hash table the same as input size or reduce the size? how to decide the table size?
- if we are using numbers in the range of 10 raised to power of 6 as the key, how do we hash these numbers to smaller values? I know we use the modulo operator but module with what?
Kindly explain how these two things work. Its getting quite confusing. Thanks!!
I tried to make the table size around 75% of the input data size, that you can call as X. Then I did key%(X) to get the hash code. But I am not sure if this is correct.
The ratio of the number of elements stored to the number of buckets in the hash table is known as the load factor. In a separate chaining implementation, I'd suggest doing what
std::unordered_setet al do and keeping it roughly in the range 0.5 to 1.0. So, for 10^9 elements have 10^9 to 2x10^9 buckets. Luckily, with separate chaining nothing awful happens if you go a bit outside this range (lower load factors just waste some memory on extra unused buckets, and higher load factors lead to increased collisions, longer lists and search times, but at load factors under 5 or 10 with an ok hash function the slow down will be roughly linear on average (so 5 or 10x slower than at load factor 1).One important decision you should make is whether to pick a number around this magnitude that is a power of two, or a prime number. Explaining the implications is tedious, and anyway - which will work best for you is best determined by trying both and measuring the performance (if you really have to care about smallish differences in performance; if not - a prime number is the safer bet).
Are these keys unsigned integers? In general, you can't have only 10^6 potential keys and end up with 10^9 hash table entries, as hash tables don't normally store duplicates (std::unordered_multiset/multi_map can, but it'll be easier for you to model that kind of thing as being a hash table from distinct keys to a container or values). More generally, it's best to separate the act of hashing (which usually is expected to generate a size_t result), from the "folding" of the hash value over the number of buckets in the hash table. That folding can be done using
%in the general case, or by bitwise-ANDing with a bitmask for power-of-two bucket counts (e.g. for 256 buckets,& 255is the same as% 256, but may execute faster on the CPU when those 255/256 values aren't known at compile time).So that's a load factor around 1.33, which is ok.
It ends up being the same thing, but I'd suggest thinking of that as having a hash function
hash(key) = key, followed by mod-ing into the bucket count. Such a hash function is known as an identity hash function, and is the implementation used for integers by all major C++ compiler Standard Libraries, though no particular hash functions are specified in the C++ Standard. It tends to work ok, but if your integer keys are particularly prone to collisions (for example, if they were all distinct multiples of 16 and your bucket count was a power of two they'd tend to only map to every 16th bucket) then it'd be better to use a stronger hash function. There are other questions about that - e.g. What integer hash function are good that accepts an integer hash key?Rehashing
If the number of elements may increase dramatically beyond your initial expectations at run-time, then you'll want to increase the number of buckets to keep the load factor reasonable (in the range discussed above). Implementing support for that can easily be done by first writing a hash table class that doesn't support rehashing - simply taking the number of buckets to use as a constructor argument. Then write an outer rehashing-capable hash table class with a data member of the above type, and when an insert would push the load factor too high (Standard Library containers have a max_load_factor member which defaults to 1.0), you can construct an additional inner hash table object telling the constructor a new larger bucket count to use, then iterate over the smaller hash table inserting (or - better - moving, see below) the elements to the new hash table, then swap the two hash tables so the data member ends up with the new larger content and the smaller one is destructed. By "moving" above With a little I mean simply relink linked list elements from the smaller hash table into the lists in the larger one, instead of deep copying the elements, which will be dramatically faster and use less memory momentarily while rehashing.