4x4 Matrix A in the python code has det(A)=0, this suggest the space should shring by at least 1 dimension under this transformation, yet has 4 distinct nonzero eigenvalues and Ax=b has a unique solution, which doesn't make sence for a singular matrix (but im a beginner in LA). Also I dont think there is any nonzero x for Ax = 0. Theese properties shouldn't come along with det(A)=0 Any idea what this can mean? edited to better explain the situation
I did the calculations in python, maybe there is a problem?
import numpy as np
def apply_transformation(original_matrix, sorted_eigenvectors):
# Construct the transformation matrix
transformation_matrix = sorted_eigenvectors
# Apply the transformation to the original matrix A
transformed_matrix = np.linalg.inv(transformation_matrix) @ original_matrix @ transformation_matrix
# Solve the linear system Ax = b, where A is the transformed matrix and b is a column vector of ones
b = np.ones((original_matrix.shape[0], 1))
solution = np.linalg.solve(transformed_matrix, b)
return transformed_matrix, solution
# Original matrix
matrix = np.array([
[15.0, 8.0, 6.0, 1.0],
[4.0, 3.0, 13.0, 10.0],
[9.0, 14.0, 0.0, 7.0],
[2.0, 5.0, 11.0, 12.0]
])
# Compute eigenvalues and eigenvectors
eigenvalues, eigenvectors = np.linalg.eigh(matrix)
# Sort eigenvalues and eigenvectors by axis
sorted_indices = np.argsort(eigenvalues)
sorted_eigenvalues = eigenvalues[sorted_indices]
sorted_eigenvectors = eigenvectors[:, sorted_indices]
# Print sorted eigenvalues
print("Sorted Eigenvalues:", sorted_eigenvalues)
# Print sorted eigenvectors (normalized)
print("Sorted and Normalized Eigenvectors:")
for i, eigenvector in enumerate(sorted_eigenvectors.T):
# Normalize the eigenvector
normalized_eigenvector = eigenvector / eigenvector[-1]
print(f"Eigenvalue {i + 1}:", normalized_eigenvector)
# Check the determinant of the matrix
matrix_determinant = np.linalg.det(matrix)
print("Determinant of the Matrix:", matrix_determinant)
# Print the transformation matrix
print("Transformation Matrix:")
print(sorted_eigenvectors)
# Apply the transformation to the original matrix and solve the linear system
transformed_matrix, solution = apply_transformation(matrix, sorted_eigenvectors)
# Print the transformed matrix
print("Transformed Matrix:")
print(transformed_matrix)
# Print the solution to the linear system
print("Solution to the Linear System Ax = b:")
print(solution)
returns:
Sorted Eigenvalues: [-14.33324848 2.22064808 11.92144515 30.19115526]
Sorted and Normalized Eigenvectors:
Eigenvalue 1: [ 0.71391039 2.50479489 -3.6622767 1. ]
Eigenvalue 2: [ 0.52881558 -1.19572376 -0.44166948 1. ]
Eigenvalue 3: [-1.32998337 0.19401269 0.14648622 1. ]
Eigenvalue 4: [0.99857055 0.8822837 1.07114506 1. ]
Determinant of the Matrix: 0.0
Transformation Matrix:
[[-0.15506629 0.31029198 -0.79087887 -0.50416659]
[-0.54405884 -0.70161227 0.11537027 -0.44545472]
[ 0.79547192 -0.25915745 0.0871085 -0.54080861]
[-0.21720694 0.58676786 0.5946532 -0.5048883 ]]
Transformed Matrix:
[[-11.94463818 -3.1985937 -3.4011859 2.63213619]
[ -0.25343154 -0.22298114 -1.53093773 0.97556332]
[ 3.2953323 2.23266413 12.35922435 -0.32617691]
[ 2.55908423 1.165752 0.19961432 29.80839497]]
Solution to the Linear System Ax = b:
[[ 3.59332203e+14]
[-1.50829941e+15]
[ 1.77373384e+14]
[ 2.69499722e+13]]
note:
Transformed matrix = T^-1 x A x T Transformation Matrix = T