in the code below, i set up a __call metafunction which, in theory, should allow me to call the table as a function and invoke the constructor, instead of using test.new()
test = {}
function test:new()
self = {}
setmetatable(self, self)
--- private properties
local str = "hello world"
-- public properties
self.__index = self
self.__call = function (cls, ...) print("Constructor called!") return cls.new(...) end
self.__tostring = function() return("__tostring: "..str) end
self.tostring = function() return("self:tstring(): "..str) end
return self
end
local t = test:new()
print(t) -- __tostring overload works
print(tostring(t)) -- again, __tostring working as expected
print(t:tostring()) -- a public call, which works
t = test() -- the __call metamethod should invoke the constructor test:new()
output:
> __tostring: hello world
> __tostring: hello world
> self.tostring(): hello world
> error: attempt to call global `test` (a table value) (x1)
(i'm using metatable(self, self) because i read somewhere it produces less overhead when creating new instances of the class. also it's quite clean-looking. it may also be where i'm getting unstuck).
You're setting the
__callmetamethod on the wrong table - theselftable - rather than thetesttable. The fix is trivial:After this,
test(...)will be equivalent totest.new(...).That said, your current code needs a refactoring / rewrite; you overwrite the implicit
selfparameter intest:new, build the metatable on each constructor call, and don't even usetestas a metatable! I suggest moving methods liketostringtotestand setting the metatable ofselfto a metatable that has__index = test. I'd also suggest separating metatables and tables in general. I'd get rid of upvalue-based private variables for now as they require you to use closures, which practically gets rid of the metatable benefit of not having to duplicate the functions per object. This is how I'd simplify your code:If you like, you can merge
testandtest_metatable; I prefer to keep them separated however.