Why is my validation accuracy not as smooth as my validation loss?

18 Views Asked by At

Can anyone explain these two graphs? Is it some kind of overfitting or not?

loss

accuracy

I'm using HAM10000 dataset for multi-classification with EfficientNetB0 (TensorFlow - Keras). These are the results:

Epoch 1/100
271/271 [==============================] - 90s 247ms/step - loss: 15.8665 - accuracy: 0.3449 - val_loss: 13.1980 - val_accuracy: 0.6562
Epoch 2/100
271/271 [==============================] - 58s 214ms/step - loss: 12.1447 - accuracy: 0.4657 - val_loss: 10.0858 - val_accuracy: 0.6758
Epoch 3/100
271/271 [==============================] - 60s 221ms/step - loss: 9.1016 - accuracy: 0.5254 - val_loss: 7.5525 - val_accuracy: 0.6510
Epoch 4/100
271/271 [==============================] - 57s 209ms/step - loss: 6.7974 - accuracy: 0.5718 - val_loss: 5.6905 - val_accuracy: 0.6562
Epoch 5/100
271/271 [==============================] - 57s 210ms/step - loss: 5.2379 - accuracy: 0.6022 - val_loss: 4.5189 - val_accuracy: 0.6771
Epoch 6/100
271/271 [==============================] - 57s 211ms/step - loss: 4.2807 - accuracy: 0.6372 - val_loss: 3.7868 - val_accuracy: 0.7096
Epoch 7/100
271/271 [==============================] - 64s 236ms/step - loss: 3.7094 - accuracy: 0.6439 - val_loss: 3.4062 - val_accuracy: 0.6745
Epoch 8/100
271/271 [==============================] - 59s 217ms/step - loss: 3.3640 - accuracy: 0.6574 - val_loss: 3.1371 - val_accuracy: 0.7044
Epoch 9/100
271/271 [==============================] - 58s 212ms/step - loss: 3.1725 - accuracy: 0.6660 - val_loss: 3.0400 - val_accuracy: 0.6927
Epoch 10/100
271/271 [==============================] - 58s 215ms/step - loss: 3.0643 - accuracy: 0.6675 - val_loss: 2.9752 - val_accuracy: 0.6615
Epoch 11/100
271/271 [==============================] - 58s 214ms/step - loss: 2.9608 - accuracy: 0.6808 - val_loss: 3.0125 - val_accuracy: 0.6576
Epoch 12/100
271/271 [==============================] - 58s 214ms/step - loss: 2.9182 - accuracy: 0.6932 - val_loss: 2.8904 - val_accuracy: 0.6888
Epoch 13/100
271/271 [==============================] - 57s 210ms/step - loss: 2.9217 - accuracy: 0.6838 - val_loss: 2.9863 - val_accuracy: 0.6133
Epoch 14/100
271/271 [==============================] - 58s 213ms/step - loss: 2.9204 - accuracy: 0.6884 - val_loss: 2.9623 - val_accuracy: 0.6615
Epoch 15/100
271/271 [==============================] - 60s 220ms/step - loss: 2.9028 - accuracy: 0.7006 - val_loss: 2.9699 - val_accuracy: 0.6693
Epoch 16/100
271/271 [==============================] - 58s 214ms/step - loss: 2.9146 - accuracy: 0.7043 - val_loss: 2.9384 - val_accuracy: 0.6953
Epoch 17/100
271/271 [==============================] - 58s 213ms/step - loss: 2.9191 - accuracy: 0.7013 - val_loss: 3.0042 - val_accuracy: 0.6562
Epoch 18/100
271/271 [==============================] - 57s 211ms/step - loss: 2.8990 - accuracy: 0.7131 - val_loss: 3.0141 - val_accuracy: 0.6289
Epoch 19/100
271/271 [==============================] - 59s 217ms/step - loss: 2.9273 - accuracy: 0.7126 - val_loss: 3.0148 - val_accuracy: 0.6276
Epoch 20/100
271/271 [==============================] - 58s 214ms/step - loss: 2.9268 - accuracy: 0.7095 - val_loss: 2.9905 - val_accuracy: 0.6836
Epoch 21/100
271/271 [==============================] - 57s 211ms/step - loss: 2.9329 - accuracy: 0.7152 - val_loss: 2.9601 - val_accuracy: 0.6745
Epoch 22/100
271/271 [==============================] - 57s 210ms/step - loss: 2.9515 - accuracy: 0.7050 - val_loss: 2.9472 - val_accuracy: 0.6836
Epoch 23/100
271/271 [==============================] - 57s 212ms/step - loss: 2.9301 - accuracy: 0.7209 - val_loss: 2.9428 - val_accuracy: 0.6888
Epoch 24/100
271/271 [==============================] - 63s 233ms/step - loss: 2.9532 - accuracy: 0.7184 - val_loss: 2.9262 - val_accuracy: 0.7174
Epoch 25/100
271/271 [==============================] - 58s 214ms/step - loss: 2.9278 - accuracy: 0.7296 - val_loss: 3.0052 - val_accuracy: 0.6693
Epoch 26/100
271/271 [==============================] - 62s 227ms/step - loss: 2.9252 - accuracy: 0.7250 - val_loss: 2.9451 - val_accuracy: 0.6979
Epoch 27/100
271/271 [==============================] - 59s 218ms/step - loss: 2.9511 - accuracy: 0.7155 - val_loss: 2.9671 - val_accuracy: 0.7083
Epoch 28/100
271/271 [==============================] - 58s 213ms/step - loss: 2.9318 - accuracy: 0.7237 - val_loss: 2.9785 - val_accuracy: 0.6914
Epoch 29/100
271/271 [==============================] - 57s 210ms/step - loss: 2.9225 - accuracy: 0.7223 - val_loss: 3.1599 - val_accuracy: 0.6185
Epoch 30/100
271/271 [==============================] - 57s 212ms/step - loss: 2.9411 - accuracy: 0.7250 - val_loss: 2.9453 - val_accuracy: 0.7057
Epoch 31/100
271/271 [==============================] - 63s 231ms/step - loss: 2.9477 - accuracy: 0.7221 - val_loss: 3.0061 - val_accuracy: 0.6888
Epoch 32/100
271/271 [==============================] - 58s 214ms/step - loss: 2.9596 - accuracy: 0.7230 - val_loss: 3.0180 - val_accuracy: 0.6654
Epoch 32: early stopping
Execution time of the program is-  2073.7081892490387

Understand the results and overcome the problem if there is any.

0

There are 0 best solutions below