So I am doing tokenization of my dataset, and created one function,
max_length = 1026
def generate_and_tokenize_prompt(prompt):
result = tokenizer(
prompt,
return_tensors="pt",
truncation=True,
max_length=max_length,
padding="max_length",
)
return result
train_dataset = df_train['prompt']
val_dataset = df_test['prompt']
tokenized_train_dataset = train_dataset.map(generate_and_tokenize_prompt)
tokenized_val_dataset = val_dataset.map(generate_and_tokenize_prompt)
Here you can see we are using return_tensors="pt", but I am not sure why are using it. Because even without this parameters, I am able to tokenize my dataset.
"pt" means return pytorch tensor. See documentation https://huggingface.co/docs/transformers/main_classes/tokenizer