I'm currently learning how to do custom dataset object detection by using Yolov5. This is my current code and I am using PyCharm.
It does not show any bounding box or identification when I run an mp4 video.
import torch
from matplotlib import pyplot as plt
import numpy as np
import cv2
model = torch.hub.load('ultralytics/yolov5', 'custom', path='yolov5/best.pt',force_reload=True)
#real time detections
cap = cv2.VideoCapture('tridaxnew.mp4') #This video should have bounding box and identification but it is not
while cap.isOpened():
ret, frame = cap.read()
#make detections
results = model(frame)
cv2.imshow('ObjectDetection', np.squeeze(results.render()))
if cv2.waitKey(10) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
When I use the terminal by using
python detect.py --weights best.pt --conf 0.45 --img-size 420 --source CustomData/tridaxnew.mp4, it brings me the results I want. However if do it in the Python script, it just shows the video of it but it does not show any bounding box and identification. I did this so I can check if the yoloV5 detection works in real-time when I use my webcam. I would appreciate any tips.